career_rep / eu-ai-act-claude.py
seanfaheymedia's picture
Upload folder using huggingface_hub
74cabcc verified
import os
import json
import logging
from typing import List, Dict, Any, Optional
from dotenv import load_dotenv
from openai import OpenAI
from pypdf import PdfReader
import requests
import gradio as gr
from pydantic import BaseModel
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv(override=True)
class Config:
"""Configuration management"""
def __init__(self):
self.openai_client = None
self.gemini_client = None
self.pushover_user = os.getenv("PUSHOVER_USER")
self.pushover_token = os.getenv("PUSHOVER_TOKEN_EU")
self.google_api_key = os.getenv("GOOGLE_API_KEY")
self.pushover_url = "https://api.pushover.net/1/messages.json"
self.pdf_path = "EU_AI_ACT.pdf"
self._validate_config()
self._initialize_clients()
def _validate_config(self):
"""Validate required environment variables"""
required_vars = {
"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY"),
"GOOGLE_API_KEY": self.google_api_key,
"PUSHOVER_USER": self.pushover_user,
"PUSHOVER_TOKEN_EU": self.pushover_token
}
missing = [var for var, value in required_vars.items() if not value]
if missing:
raise ValueError(f"Missing required environment variables: {missing}")
def _initialize_clients(self):
"""Initialize API clients"""
try:
self.openai_client = OpenAI()
self.gemini_client = OpenAI(
api_key=self.google_api_key,
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
except Exception as e:
logger.error(f"Failed to initialize API clients: {e}")
raise
class PushNotificationService:
"""Handle push notifications"""
def __init__(self, config: Config):
self.config = config
def send_notification(self, message: str) -> bool:
"""Send push notification"""
try:
logger.info(f"Sending notification: {message}")
payload = {
"user": self.config.pushover_user,
"token": self.config.pushover_token,
"message": message
}
response = requests.post(self.config.pushover_url, data=payload, timeout=10)
response.raise_for_status()
return True
except Exception as e:
logger.error(f"Failed to send notification: {e}")
return False
class DocumentLoader:
"""Handle document loading and processing"""
def __init__(self, config: Config):
self.config = config
self.document_content = ""
self._load_document()
def _load_document(self):
"""Load and extract text from PDF"""
try:
if not os.path.exists(self.config.pdf_path):
raise FileNotFoundError(f"PDF file not found: {self.config.pdf_path}")
reader = PdfReader(self.config.pdf_path)
text_parts = []
for page_num, page in enumerate(reader.pages):
try:
text = page.extract_text()
if text:
text_parts.append(text)
except Exception as e:
logger.warning(f"Failed to extract text from page {page_num}: {e}")
self.document_content = "\n".join(text_parts)
logger.info(f"Successfully loaded document with {len(self.document_content)} characters")
except Exception as e:
logger.error(f"Failed to load document: {e}")
# Provide fallback content
self.document_content = "Document loading failed. Operating with limited information."
class ToolHandler:
"""Handle tool calls and user interactions"""
def __init__(self, notification_service: PushNotificationService):
self.notification_service = notification_service
def record_user_details(self, email: str, name: str = "Name not provided",
notes: str = "No additional notes") -> Dict[str, str]:
"""Record user contact details"""
try:
message = f"Recording interest from {name} with email {email} and notes: {notes}"
success = self.notification_service.send_notification(message)
return {"status": "success" if success else "notification_failed", "recorded": "ok"}
except Exception as e:
logger.error(f"Failed to record user details: {e}")
return {"status": "error", "message": str(e)}
def record_unknown_question(self, question: str) -> Dict[str, str]:
"""Record questions that couldn't be answered"""
try:
message = f"Unanswered question: {question}"
success = self.notification_service.send_notification(message)
return {"status": "success" if success else "notification_failed", "recorded": "ok"}
except Exception as e:
logger.error(f"Failed to record unknown question: {e}")
return {"status": "error", "message": str(e)}
def get_tools_schema(self) -> List[Dict[str, Any]]:
"""Return tool schemas for OpenAI"""
return [
{
"type": "function",
"function": {
"name": "record_user_details",
"description": "Record user contact information when they express interest in follow-up",
"parameters": {
"type": "object",
"properties": {
"email": {
"type": "string",
"description": "The user's email address"
},
"name": {
"type": "string",
"description": "The user's name if provided"
},
"notes": {
"type": "string",
"description": "Additional context about the conversation"
}
},
"required": ["email"],
"additionalProperties": False
}
}
},
{
"type": "function",
"function": {
"name": "record_unknown_question",
"description": "Record questions that couldn't be answered from the documentation",
"parameters": {
"type": "object",
"properties": {
"question": {
"type": "string",
"description": "The question that couldn't be answered"
}
},
"required": ["question"],
"additionalProperties": False
}
}
}
]
def handle_tool_calls(self, tool_calls) -> List[Dict[str, Any]]:
"""Process tool calls from the LLM"""
results = []
for tool_call in tool_calls:
try:
tool_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
logger.info(f"Executing tool: {tool_name}")
if tool_name == "record_user_details":
result = self.record_user_details(**arguments)
elif tool_name == "record_unknown_question":
result = self.record_unknown_question(**arguments)
else:
result = {"status": "error", "message": f"Unknown tool: {tool_name}"}
results.append({
"role": "tool",
"content": json.dumps(result),
"tool_call_id": tool_call.id
})
except Exception as e:
logger.error(f"Tool call failed: {e}")
results.append({
"role": "tool",
"content": json.dumps({"status": "error", "message": str(e)}),
"tool_call_id": tool_call.id
})
return results
class Evaluation(BaseModel):
"""Pydantic model for response evaluation"""
is_acceptable: bool
feedback: str
class ResponseEvaluator:
"""Evaluate chatbot responses for quality"""
def __init__(self, config: Config, document_content: str):
self.config = config
self.document_content = document_content
self.system_prompt = self._build_evaluator_prompt()
def _build_evaluator_prompt(self) -> str:
"""Build the evaluator system prompt"""
return f"""You are an evaluator for an EU AI Act expert chatbot.
Your task is to determine if the chatbot's response is acceptable quality based on:
1. Accuracy relative to the provided EU AI Act documentation
2. Clarity and helpfulness for the user
3. Professional and engaging tone
4. Appropriate use of the documentation context
The chatbot has access to this EU AI Act documentation:
{self.document_content[:5000]}...
Evaluate whether the response is acceptable and provide constructive feedback."""
def evaluate_response(self, reply: str, message: str, history: List[Dict[str, str]]) -> Optional[Evaluation]:
"""Evaluate a chatbot response"""
try:
user_prompt = self._build_user_prompt(reply, message, history)
messages = [
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": user_prompt}
]
response = self.config.gemini_client.beta.chat.completions.parse(
model="gemini-2.0-flash",
messages=messages,
response_format=Evaluation,
timeout=30
)
return response.choices[0].message.parsed
except Exception as e:
logger.error(f"Evaluation failed: {e}")
return None
def _build_user_prompt(self, reply: str, message: str, history: List[Dict[str, str]]) -> str:
"""Build evaluation prompt for specific conversation"""
history_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in history[-5:]])
return f"""
Conversation history (last 5 messages):
{history_text}
Latest user message: {message}
Chatbot response: {reply}
Please evaluate if this response is acceptable and provide feedback.
"""
class EUAIActChatbot:
"""Main chatbot class"""
def __init__(self):
self.config = Config()
self.notification_service = PushNotificationService(self.config)
self.document_loader = DocumentLoader(self.config)
self.tool_handler = ToolHandler(self.notification_service)
self.evaluator = ResponseEvaluator(self.config, self.document_loader.document_content)
self.system_prompt = self._build_system_prompt()
self.max_retries = 2
def _build_system_prompt(self) -> str:
"""Build the main system prompt"""
return f"""You are an expert assistant specializing in the EU Artificial Intelligence Act (EU AI Act).
Your role is to help users understand:
- Key principles and obligations under the EU AI Act
- Risk classifications for AI systems
- Compliance requirements for businesses
- How the Act applies to different sectors and use cases
Guidelines:
- Provide accurate, clear, and actionable guidance based on the official documentation
- Make complex legal language accessible to business owners and compliance officers
- Maintain a professional, informative, and approachable tone
- If you cannot answer a question from the provided documentation, use the record_unknown_question tool
- If users show interest in deeper support, encourage them to share contact details using record_user_details
## EU AI Act Documentation:
{self.document_loader.document_content}
Use this documentation to provide accurate, helpful responses about the EU AI Act."""
def generate_response(self, message: str, history: List[Dict[str, str]]) -> str:
"""Generate a response with tool support and evaluation"""
messages = [{"role": "system", "content": self.system_prompt}]
messages.extend(history)
messages.append({"role": "user", "content": message})
try:
# Generate initial response with tools
response = self._call_openai_with_tools(messages)
# Evaluate response quality
evaluation = self.evaluator.evaluate_response(response, message, history)
if evaluation and not evaluation.is_acceptable and self.max_retries > 0:
logger.info("Response failed evaluation, retrying...")
response = self._retry_with_feedback(messages, response, evaluation.feedback)
return response
except Exception as e:
logger.error(f"Failed to generate response: {e}")
return "I'm sorry, I'm experiencing technical difficulties. Please try again later."
def _call_openai_with_tools(self, messages: List[Dict[str, str]]) -> str:
"""Call OpenAI API with tool support"""
tools = self.tool_handler.get_tools_schema()
max_iterations = 5
iteration = 0
while iteration < max_iterations:
response = self.config.openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
tools=tools,
timeout=60
)
finish_reason = response.choices[0].finish_reason
if finish_reason == "tool_calls":
# Handle tool calls
message_with_tools = response.choices[0].message
tool_results = self.tool_handler.handle_tool_calls(message_with_tools.tool_calls)
messages.append(message_with_tools)
messages.extend(tool_results)
iteration += 1
else:
return response.choices[0].message.content
return "I apologize, but I encountered an issue processing your request. Please try rephrasing your question."
def _retry_with_feedback(self, original_messages: List[Dict[str, str]],
failed_response: str, feedback: str) -> str:
"""Retry generation with evaluator feedback"""
try:
retry_prompt = f"""Your previous response was not acceptable. Here's what needs improvement:
Previous response: {failed_response}
Feedback: {feedback}
Please provide a better response addressing these concerns."""
messages = original_messages + [{"role": "user", "content": retry_prompt}]
response = self.config.openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
timeout=60
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Retry failed: {e}")
return failed_response # Return original if retry fails
def create_gradio_interface():
"""Create and configure Gradio interface"""
try:
chatbot = EUAIActChatbot()
def chat_wrapper(message: str, history: List[List[str]]) -> str:
# Convert Gradio format to OpenAI format
formatted_history = []
for i, (user_msg, assistant_msg) in enumerate(history):
formatted_history.append({"role": "user", "content": user_msg})
if assistant_msg: # Only add if assistant responded
formatted_history.append({"role": "assistant", "content": assistant_msg})
return chatbot.generate_response(message, formatted_history)
# Create interface
interface = gr.ChatInterface(
fn=chat_wrapper,
title="EU AI Act Expert Assistant",
description="Ask questions about the EU Artificial Intelligence Act. I can help you understand compliance requirements, risk classifications, and how the Act applies to your business.",
examples=[
"What are the main risk categories in the EU AI Act?",
"How does the EU AI Act affect my e-commerce business?",
"What are the compliance requirements for high-risk AI systems?",
"Can you explain the prohibited AI practices?"
],
retry_btn=True,
undo_btn=True,
clear_btn=True
)
return interface
except Exception as e:
logger.error(f"Failed to create interface: {e}")
raise
if __name__ == "__main__":
try:
interface = create_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False
)
except Exception as e:
logger.error(f"Failed to launch application: {e}")
print(f"Error: {e}")
print("Please check your configuration and try again.")