File size: 17,711 Bytes
74cabcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
import json
import logging
from typing import List, Dict, Any, Optional
from dotenv import load_dotenv
from openai import OpenAI
from pypdf import PdfReader
import requests
import gradio as gr
from pydantic import BaseModel

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv(override=True)

class Config:
    """Configuration management"""
    def __init__(self):
        self.openai_client = None
        self.gemini_client = None
        self.pushover_user = os.getenv("PUSHOVER_USER")
        self.pushover_token = os.getenv("PUSHOVER_TOKEN_EU")
        self.google_api_key = os.getenv("GOOGLE_API_KEY")
        self.pushover_url = "https://api.pushover.net/1/messages.json"
        self.pdf_path = "EU_AI_ACT.pdf"
        
        self._validate_config()
        self._initialize_clients()
    
    def _validate_config(self):
        """Validate required environment variables"""
        required_vars = {
            "OPENAI_API_KEY": os.getenv("OPENAI_API_KEY"),
            "GOOGLE_API_KEY": self.google_api_key,
            "PUSHOVER_USER": self.pushover_user,
            "PUSHOVER_TOKEN_EU": self.pushover_token
        }
        
        missing = [var for var, value in required_vars.items() if not value]
        if missing:
            raise ValueError(f"Missing required environment variables: {missing}")
    
    def _initialize_clients(self):
        """Initialize API clients"""
        try:
            self.openai_client = OpenAI()
            self.gemini_client = OpenAI(
                api_key=self.google_api_key,
                base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
            )
        except Exception as e:
            logger.error(f"Failed to initialize API clients: {e}")
            raise

class PushNotificationService:
    """Handle push notifications"""
    def __init__(self, config: Config):
        self.config = config
    
    def send_notification(self, message: str) -> bool:
        """Send push notification"""
        try:
            logger.info(f"Sending notification: {message}")
            payload = {
                "user": self.config.pushover_user,
                "token": self.config.pushover_token,
                "message": message
            }
            response = requests.post(self.config.pushover_url, data=payload, timeout=10)
            response.raise_for_status()
            return True
        except Exception as e:
            logger.error(f"Failed to send notification: {e}")
            return False

class DocumentLoader:
    """Handle document loading and processing"""
    def __init__(self, config: Config):
        self.config = config
        self.document_content = ""
        self._load_document()
    
    def _load_document(self):
        """Load and extract text from PDF"""
        try:
            if not os.path.exists(self.config.pdf_path):
                raise FileNotFoundError(f"PDF file not found: {self.config.pdf_path}")
            
            reader = PdfReader(self.config.pdf_path)
            text_parts = []
            
            for page_num, page in enumerate(reader.pages):
                try:
                    text = page.extract_text()
                    if text:
                        text_parts.append(text)
                except Exception as e:
                    logger.warning(f"Failed to extract text from page {page_num}: {e}")
            
            self.document_content = "\n".join(text_parts)
            logger.info(f"Successfully loaded document with {len(self.document_content)} characters")
            
        except Exception as e:
            logger.error(f"Failed to load document: {e}")
            # Provide fallback content
            self.document_content = "Document loading failed. Operating with limited information."

class ToolHandler:
    """Handle tool calls and user interactions"""
    def __init__(self, notification_service: PushNotificationService):
        self.notification_service = notification_service
    
    def record_user_details(self, email: str, name: str = "Name not provided", 
                          notes: str = "No additional notes") -> Dict[str, str]:
        """Record user contact details"""
        try:
            message = f"Recording interest from {name} with email {email} and notes: {notes}"
            success = self.notification_service.send_notification(message)
            return {"status": "success" if success else "notification_failed", "recorded": "ok"}
        except Exception as e:
            logger.error(f"Failed to record user details: {e}")
            return {"status": "error", "message": str(e)}
    
    def record_unknown_question(self, question: str) -> Dict[str, str]:
        """Record questions that couldn't be answered"""
        try:
            message = f"Unanswered question: {question}"
            success = self.notification_service.send_notification(message)
            return {"status": "success" if success else "notification_failed", "recorded": "ok"}
        except Exception as e:
            logger.error(f"Failed to record unknown question: {e}")
            return {"status": "error", "message": str(e)}
    
    def get_tools_schema(self) -> List[Dict[str, Any]]:
        """Return tool schemas for OpenAI"""
        return [
            {
                "type": "function",
                "function": {
                    "name": "record_user_details",
                    "description": "Record user contact information when they express interest in follow-up",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "email": {
                                "type": "string",
                                "description": "The user's email address"
                            },
                            "name": {
                                "type": "string",
                                "description": "The user's name if provided"
                            },
                            "notes": {
                                "type": "string",
                                "description": "Additional context about the conversation"
                            }
                        },
                        "required": ["email"],
                        "additionalProperties": False
                    }
                }
            },
            {
                "type": "function",
                "function": {
                    "name": "record_unknown_question",
                    "description": "Record questions that couldn't be answered from the documentation",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "question": {
                                "type": "string",
                                "description": "The question that couldn't be answered"
                            }
                        },
                        "required": ["question"],
                        "additionalProperties": False
                    }
                }
            }
        ]
    
    def handle_tool_calls(self, tool_calls) -> List[Dict[str, Any]]:
        """Process tool calls from the LLM"""
        results = []
        for tool_call in tool_calls:
            try:
                tool_name = tool_call.function.name
                arguments = json.loads(tool_call.function.arguments)
                logger.info(f"Executing tool: {tool_name}")
                
                if tool_name == "record_user_details":
                    result = self.record_user_details(**arguments)
                elif tool_name == "record_unknown_question":
                    result = self.record_unknown_question(**arguments)
                else:
                    result = {"status": "error", "message": f"Unknown tool: {tool_name}"}
                
                results.append({
                    "role": "tool",
                    "content": json.dumps(result),
                    "tool_call_id": tool_call.id
                })
            except Exception as e:
                logger.error(f"Tool call failed: {e}")
                results.append({
                    "role": "tool",
                    "content": json.dumps({"status": "error", "message": str(e)}),
                    "tool_call_id": tool_call.id
                })
        return results

class Evaluation(BaseModel):
    """Pydantic model for response evaluation"""
    is_acceptable: bool
    feedback: str

class ResponseEvaluator:
    """Evaluate chatbot responses for quality"""
    def __init__(self, config: Config, document_content: str):
        self.config = config
        self.document_content = document_content
        self.system_prompt = self._build_evaluator_prompt()
    
    def _build_evaluator_prompt(self) -> str:
        """Build the evaluator system prompt"""
        return f"""You are an evaluator for an EU AI Act expert chatbot. 
        
Your task is to determine if the chatbot's response is acceptable quality based on:
1. Accuracy relative to the provided EU AI Act documentation
2. Clarity and helpfulness for the user
3. Professional and engaging tone
4. Appropriate use of the documentation context

The chatbot has access to this EU AI Act documentation:

{self.document_content[:5000]}...

Evaluate whether the response is acceptable and provide constructive feedback."""
    
    def evaluate_response(self, reply: str, message: str, history: List[Dict[str, str]]) -> Optional[Evaluation]:
        """Evaluate a chatbot response"""
        try:
            user_prompt = self._build_user_prompt(reply, message, history)
            messages = [
                {"role": "system", "content": self.system_prompt},
                {"role": "user", "content": user_prompt}
            ]
            
            response = self.config.gemini_client.beta.chat.completions.parse(
                model="gemini-2.0-flash",
                messages=messages,
                response_format=Evaluation,
                timeout=30
            )
            return response.choices[0].message.parsed
        except Exception as e:
            logger.error(f"Evaluation failed: {e}")
            return None
    
    def _build_user_prompt(self, reply: str, message: str, history: List[Dict[str, str]]) -> str:
        """Build evaluation prompt for specific conversation"""
        history_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in history[-5:]])
        return f"""
Conversation history (last 5 messages):
{history_text}

Latest user message: {message}
Chatbot response: {reply}

Please evaluate if this response is acceptable and provide feedback.
"""

class EUAIActChatbot:
    """Main chatbot class"""
    def __init__(self):
        self.config = Config()
        self.notification_service = PushNotificationService(self.config)
        self.document_loader = DocumentLoader(self.config)
        self.tool_handler = ToolHandler(self.notification_service)
        self.evaluator = ResponseEvaluator(self.config, self.document_loader.document_content)
        self.system_prompt = self._build_system_prompt()
        self.max_retries = 2
    
    def _build_system_prompt(self) -> str:
        """Build the main system prompt"""
        return f"""You are an expert assistant specializing in the EU Artificial Intelligence Act (EU AI Act).

Your role is to help users understand:
- Key principles and obligations under the EU AI Act
- Risk classifications for AI systems
- Compliance requirements for businesses
- How the Act applies to different sectors and use cases

Guidelines:
- Provide accurate, clear, and actionable guidance based on the official documentation
- Make complex legal language accessible to business owners and compliance officers
- Maintain a professional, informative, and approachable tone
- If you cannot answer a question from the provided documentation, use the record_unknown_question tool
- If users show interest in deeper support, encourage them to share contact details using record_user_details

## EU AI Act Documentation:
{self.document_loader.document_content}

Use this documentation to provide accurate, helpful responses about the EU AI Act."""
    
    def generate_response(self, message: str, history: List[Dict[str, str]]) -> str:
        """Generate a response with tool support and evaluation"""
        messages = [{"role": "system", "content": self.system_prompt}]
        messages.extend(history)
        messages.append({"role": "user", "content": message})
        
        try:
            # Generate initial response with tools
            response = self._call_openai_with_tools(messages)
            
            # Evaluate response quality
            evaluation = self.evaluator.evaluate_response(response, message, history)
            
            if evaluation and not evaluation.is_acceptable and self.max_retries > 0:
                logger.info("Response failed evaluation, retrying...")
                response = self._retry_with_feedback(messages, response, evaluation.feedback)
            
            return response
            
        except Exception as e:
            logger.error(f"Failed to generate response: {e}")
            return "I'm sorry, I'm experiencing technical difficulties. Please try again later."
    
    def _call_openai_with_tools(self, messages: List[Dict[str, str]]) -> str:
        """Call OpenAI API with tool support"""
        tools = self.tool_handler.get_tools_schema()
        max_iterations = 5
        iteration = 0
        
        while iteration < max_iterations:
            response = self.config.openai_client.chat.completions.create(
                model="gpt-4o-mini",
                messages=messages,
                tools=tools,
                timeout=60
            )
            
            finish_reason = response.choices[0].finish_reason
            
            if finish_reason == "tool_calls":
                # Handle tool calls
                message_with_tools = response.choices[0].message
                tool_results = self.tool_handler.handle_tool_calls(message_with_tools.tool_calls)
                
                messages.append(message_with_tools)
                messages.extend(tool_results)
                iteration += 1
            else:
                return response.choices[0].message.content
        
        return "I apologize, but I encountered an issue processing your request. Please try rephrasing your question."
    
    def _retry_with_feedback(self, original_messages: List[Dict[str, str]], 
                           failed_response: str, feedback: str) -> str:
        """Retry generation with evaluator feedback"""
        try:
            retry_prompt = f"""Your previous response was not acceptable. Here's what needs improvement:

Previous response: {failed_response}
Feedback: {feedback}

Please provide a better response addressing these concerns."""
            
            messages = original_messages + [{"role": "user", "content": retry_prompt}]
            
            response = self.config.openai_client.chat.completions.create(
                model="gpt-4o-mini",
                messages=messages,
                timeout=60
            )
            return response.choices[0].message.content
            
        except Exception as e:
            logger.error(f"Retry failed: {e}")
            return failed_response  # Return original if retry fails

def create_gradio_interface():
    """Create and configure Gradio interface"""
    try:
        chatbot = EUAIActChatbot()
        
        def chat_wrapper(message: str, history: List[List[str]]) -> str:
            # Convert Gradio format to OpenAI format
            formatted_history = []
            for i, (user_msg, assistant_msg) in enumerate(history):
                formatted_history.append({"role": "user", "content": user_msg})
                if assistant_msg:  # Only add if assistant responded
                    formatted_history.append({"role": "assistant", "content": assistant_msg})
            
            return chatbot.generate_response(message, formatted_history)
        
        # Create interface
        interface = gr.ChatInterface(
            fn=chat_wrapper,
            title="EU AI Act Expert Assistant",
            description="Ask questions about the EU Artificial Intelligence Act. I can help you understand compliance requirements, risk classifications, and how the Act applies to your business.",
            examples=[
                "What are the main risk categories in the EU AI Act?",
                "How does the EU AI Act affect my e-commerce business?",
                "What are the compliance requirements for high-risk AI systems?",
                "Can you explain the prohibited AI practices?"
            ],
            retry_btn=True,
            undo_btn=True,
            clear_btn=True
        )
        
        return interface
        
    except Exception as e:
        logger.error(f"Failed to create interface: {e}")
        raise

if __name__ == "__main__":
    try:
        interface = create_gradio_interface()
        interface.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False,
            debug=False
        )
    except Exception as e:
        logger.error(f"Failed to launch application: {e}")
        print(f"Error: {e}")
        print("Please check your configuration and try again.")