Omachoko
Fix import error
b1b6a29
import os
import gradio as gr
import requests
import inspect
import pandas as pd
# Import GAIA system from separate module
from gaia_system import BasicAgent, MultiModelGAIASystem
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running GAIA-optimized agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
# Get raw answer from agent (should be clean already)
raw_answer = agent(question_text)
# Final cleanup for API submission - ensure no extra formatting
submitted_answer = clean_for_api_submission(raw_answer)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
print(f"Task {task_id}: {submitted_answer}")
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
def clean_for_api_submission(answer: str) -> str:
"""
Final cleanup of agent answers for GAIA API submission
Ensures exact match compliance
"""
if not answer:
return "I cannot determine the answer"
# Remove any remaining formatting artifacts
answer = answer.strip()
# Remove markdown formatting
answer = answer.replace('**', '').replace('*', '').replace('`', '')
# Remove any "Answer:" prefixes that might have slipped through
answer = answer.replace('Answer:', '').replace('ANSWER:', '').strip()
# Remove any trailing periods for factual answers (but keep for sentences)
if len(answer.split()) == 1 or answer.replace('.', '').replace(',', '').isdigit():
answer = answer.rstrip('.')
return answer
# --- Enhanced Gradio Interface ---
with gr.Blocks(title="๐Ÿš€ GAIA Multi-Agent System") as demo:
gr.Markdown("# ๐Ÿš€ GAIA Multi-Agent System - BENCHMARK OPTIMIZED")
gr.Markdown(
"""
**GAIA Benchmark-Optimized AI Agent for Exact-Match Evaluation**
This system is specifically optimized for the GAIA benchmark with:
๐ŸŽฏ **Exact-Match Compliance**: Answers formatted for direct evaluation
๐Ÿงฎ **Mathematical Precision**: Clean numerical results
๐ŸŒ **Factual Accuracy**: Direct answers without explanations
๐Ÿ”ฌ **Scientific Knowledge**: Precise values and facts
๐Ÿง  **Multi-Model Reasoning**: 10+ AI models with intelligent fallback
---
**GAIA Benchmark Requirements:**
โœ… **Direct answers only** - No "The answer is" prefixes
โœ… **No reasoning shown** - Thinking process completely removed
โœ… **Exact format matching** - Numbers, names, or comma-separated lists
โœ… **No explanations** - Just the final result
**Test Examples:**
- Math: "What is 15 + 27?" โ†’ "42"
- Geography: "What is the capital of France?" โ†’ "Paris"
- Science: "How many planets are in our solar system?" โ†’ "8"
---
**System Status:**
- โœ… GAIA-Optimized Agent: Active
- ๐Ÿค– AI Models: DeepSeek-R1, GPT-4o, Llama-3.3-70B + 7 more
- ๐Ÿ›ก๏ธ Fallback System: Enhanced with exact answers
- ๐Ÿ“ Response Cleaning: Aggressive for benchmark compliance
"""
)
# Test interface for local development
with gr.Row():
with gr.Column():
test_input = gr.Textbox(
label="๐Ÿงช Test Question (GAIA Style)",
placeholder="Try: What is 15 + 27? or What is the capital of France?",
lines=2
)
test_button = gr.Button("๐Ÿ” Test Agent", variant="secondary")
with gr.Column():
test_output = gr.Textbox(
label="๐Ÿค– Agent Response (Direct Answer Only)",
lines=3,
interactive=False
)
gr.LoginButton()
run_button = gr.Button("๐Ÿš€ Run GAIA Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="๐Ÿ“Š Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="๐Ÿ“‹ Questions and Agent Answers", wrap=True)
# Test function for local development
def test_agent(question):
try:
agent = BasicAgent()
response = agent(question)
# Clean for display (same as API submission)
cleaned_response = clean_for_api_submission(response)
return f"Direct Answer: {cleaned_response}"
except Exception as e:
return f"Error: {str(e)}"
test_button.click(
fn=test_agent,
inputs=[test_input],
outputs=[test_output]
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"โœ… SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("โ„น๏ธ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"โœ… SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("โ„น๏ธ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Enhanced GAIA Multi-Agent System...")
demo.launch(debug=True, share=False)