File size: 11,167 Bytes
e9d5104
 
 
 
 
 
 
b1b6a29
e9d5104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import gradio as gr
import requests
import inspect
import pandas as pd

# Import GAIA system from separate module
from gaia_system import BasicAgent, MultiModelGAIASystem

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running GAIA-optimized agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            # Get raw answer from agent (should be clean already)
            raw_answer = agent(question_text)
            
            # Final cleanup for API submission - ensure no extra formatting
            submitted_answer = clean_for_api_submission(raw_answer)
            
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            print(f"Task {task_id}: {submitted_answer}")
            
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

def clean_for_api_submission(answer: str) -> str:
    """
    Final cleanup of agent answers for GAIA API submission
    Ensures exact match compliance
    """
    if not answer:
        return "I cannot determine the answer"
    
    # Remove any remaining formatting artifacts
    answer = answer.strip()
    
    # Remove markdown formatting
    answer = answer.replace('**', '').replace('*', '').replace('`', '')
    
    # Remove any "Answer:" prefixes that might have slipped through
    answer = answer.replace('Answer:', '').replace('ANSWER:', '').strip()
    
    # Remove any trailing periods for factual answers (but keep for sentences)
    if len(answer.split()) == 1 or answer.replace('.', '').replace(',', '').isdigit():
        answer = answer.rstrip('.')
    
    return answer

# --- Enhanced Gradio Interface ---
with gr.Blocks(title="๐Ÿš€ GAIA Multi-Agent System") as demo:
    gr.Markdown("# ๐Ÿš€ GAIA Multi-Agent System - BENCHMARK OPTIMIZED")
    gr.Markdown(
        """
        **GAIA Benchmark-Optimized AI Agent for Exact-Match Evaluation**

        This system is specifically optimized for the GAIA benchmark with:
        
        ๐ŸŽฏ **Exact-Match Compliance**: Answers formatted for direct evaluation  
        ๐Ÿงฎ **Mathematical Precision**: Clean numerical results  
        ๐ŸŒ **Factual Accuracy**: Direct answers without explanations  
        ๐Ÿ”ฌ **Scientific Knowledge**: Precise values and facts  
        ๐Ÿง  **Multi-Model Reasoning**: 10+ AI models with intelligent fallback
        
        ---
        **GAIA Benchmark Requirements:**

        โœ… **Direct answers only** - No "The answer is" prefixes  
        โœ… **No reasoning shown** - Thinking process completely removed  
        โœ… **Exact format matching** - Numbers, names, or comma-separated lists  
        โœ… **No explanations** - Just the final result  
        
        **Test Examples:**
        - Math: "What is 15 + 27?" โ†’ "42"
        - Geography: "What is the capital of France?" โ†’ "Paris"  
        - Science: "How many planets are in our solar system?" โ†’ "8"

        ---
        **System Status:**
        - โœ… GAIA-Optimized Agent: Active
        - ๐Ÿค– AI Models: DeepSeek-R1, GPT-4o, Llama-3.3-70B + 7 more
        - ๐Ÿ›ก๏ธ Fallback System: Enhanced with exact answers
        - ๐Ÿ“ Response Cleaning: Aggressive for benchmark compliance
        """
    )

    # Test interface for local development
    with gr.Row():
        with gr.Column():
            test_input = gr.Textbox(
                label="๐Ÿงช Test Question (GAIA Style)",
                placeholder="Try: What is 15 + 27? or What is the capital of France?",
                lines=2
            )
            test_button = gr.Button("๐Ÿ” Test Agent", variant="secondary")
        with gr.Column():
            test_output = gr.Textbox(
                label="๐Ÿค– Agent Response (Direct Answer Only)",
                lines=3,
                interactive=False
            )

    gr.LoginButton()

    run_button = gr.Button("๐Ÿš€ Run GAIA Evaluation & Submit All Answers", variant="primary")

    status_output = gr.Textbox(label="๐Ÿ“Š Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="๐Ÿ“‹ Questions and Agent Answers", wrap=True)

    # Test function for local development
    def test_agent(question):
        try:
            agent = BasicAgent()
            response = agent(question)
            # Clean for display (same as API submission)
            cleaned_response = clean_for_api_submission(response)
            return f"Direct Answer: {cleaned_response}"
        except Exception as e:
            return f"Error: {str(e)}"

    test_button.click(
        fn=test_agent,
        inputs=[test_input],
        outputs=[test_output]
    )

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"โœ… SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("โ„น๏ธ  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"โœ… SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("โ„น๏ธ  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Enhanced GAIA Multi-Agent System...")
    demo.launch(debug=True, share=False)