Spaces:
Running
Running
import os | |
import re | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from huggingface_hub import InferenceClient | |
from duckduckgo_search import DDGS | |
import wikipediaapi | |
from bs4 import BeautifulSoup | |
import pdfplumber | |
import pytube | |
# === CONFIG === | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
ADVANCED_MODELS = [ | |
"deepseek-ai/DeepSeek-R1", | |
"deepseek-ai/DeepSeek-V2-Chat", | |
"Qwen/Qwen2-72B-Instruct", | |
"mistralai/Mixtral-8x22B-Instruct-v0.1", | |
"meta-llama/Meta-Llama-3-70B-Instruct" | |
] | |
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 (chockqoteewy@gmail.com)") | |
# === UTILS === | |
def extract_links(text): | |
if not text: | |
return [] | |
url_pattern = re.compile(r'(https?://[^\s\)\],]+)') | |
return url_pattern.findall(text) | |
def download_file(url, out_dir="tmp_files"): | |
os.makedirs(out_dir, exist_ok=True) | |
filename = url.split("/")[-1].split("?")[0] | |
local_path = os.path.join(out_dir, filename) | |
try: | |
r = requests.get(url, timeout=30) | |
r.raise_for_status() | |
with open(local_path, "wb") as f: | |
f.write(r.content) | |
return local_path | |
except Exception: | |
return None | |
def summarize_excel(file_path): | |
try: | |
df = pd.read_excel(file_path) | |
# Heuristic: Sum column with "total" or "sales" in name, excluding drinks | |
df.columns = [col.lower() for col in df.columns] | |
item_col = next((col for col in df.columns if "item" in col or "menu" in col), None) | |
total_col = next((col for col in df.columns if "total" in col or "sales" in col or "amount" in col), None) | |
if not item_col or not total_col: | |
return f"Excel columns: {', '.join(df.columns)}. Could not find item/total columns." | |
df_food = df[~df[item_col].str.lower().str.contains("drink|beverage|soda|juice", na=False)] | |
total = df_food[total_col].astype(float).sum() | |
return f"{total:.2f}" | |
except Exception as e: | |
return f"Excel error: {e}" | |
def summarize_csv(file_path): | |
try: | |
df = pd.read_csv(file_path) | |
# Same logic as summarize_excel | |
df.columns = [col.lower() for col in df.columns] | |
item_col = next((col for col in df.columns if "item" in col or "menu" in col), None) | |
total_col = next((col for col in df.columns if "total" in col or "sales" in col or "amount" in col), None) | |
if not item_col or not total_col: | |
return f"CSV columns: {', '.join(df.columns)}. Could not find item/total columns." | |
df_food = df[~df[item_col].str.lower().str.contains("drink|beverage|soda|juice", na=False)] | |
total = df_food[total_col].astype(float).sum() | |
return f"{total:.2f}" | |
except Exception as e: | |
return f"CSV error: {e}" | |
def summarize_pdf(file_path): | |
try: | |
with pdfplumber.open(file_path) as pdf: | |
first_page = pdf.pages[0].extract_text() | |
return f"PDF text sample: {first_page[:1000]}" | |
except Exception as e: | |
return f"PDF error: {e}" | |
def summarize_txt(file_path): | |
try: | |
with open(file_path, encoding='utf-8') as f: | |
txt = f.read() | |
return f"TXT file sample: {txt[:1000]}" | |
except Exception as e: | |
return f"TXT error: {e}" | |
def analyze_file(file_path): | |
file_path = file_path.lower() | |
if file_path.endswith((".xlsx", ".xls")): | |
return summarize_excel(file_path) | |
elif file_path.endswith(".csv"): | |
return summarize_csv(file_path) | |
elif file_path.endswith(".pdf"): | |
return summarize_pdf(file_path) | |
elif file_path.endswith(".txt"): | |
return summarize_txt(file_path) | |
else: | |
return f"Unsupported file type: {file_path}" | |
def analyze_webpage(url): | |
try: | |
r = requests.get(url, timeout=20) | |
soup = BeautifulSoup(r.text, "lxml") | |
title = soup.title.string if soup.title else "No title" | |
paragraphs = [p.get_text() for p in soup.find_all("p")] | |
article_sample = "\n".join(paragraphs[:5]) | |
return f"Webpage Title: {title}\nContent sample:\n{article_sample[:1000]}" | |
except Exception as e: | |
return f"Webpage error: {e}" | |
def analyze_youtube(url): | |
try: | |
yt = pytube.YouTube(url) | |
captions = yt.captions.get_by_language_code('en') | |
if captions: | |
text = captions.generate_srt_captions() | |
return f"YouTube Transcript sample: {text[:800]}" | |
else: | |
return f"No English captions found for {url}" | |
except Exception as e: | |
return f"YouTube error: {e}" | |
def duckduckgo_search(query): | |
try: | |
with DDGS() as ddgs: | |
results = [r for r in ddgs.text(query, max_results=3)] | |
bodies = [r.get("body", "") for r in results if r.get("body")] | |
return "\n".join(bodies) if bodies else None | |
except Exception: | |
return None | |
def wikipedia_search(query): | |
try: | |
page = wiki_api.page(query) | |
if page.exists() and page.summary: | |
return page.summary | |
except Exception: | |
return None | |
return None | |
def llm_conversational(query): | |
for model_id in ADVANCED_MODELS: | |
try: | |
hf_client = InferenceClient(model_id, token=HF_TOKEN) | |
result = hf_client.conversational( | |
messages=[{"role": "user", "content": query}], | |
max_new_tokens=384, | |
) | |
if isinstance(result, dict) and "generated_text" in result: | |
return result["generated_text"] | |
elif hasattr(result, "generated_text"): | |
return result.generated_text | |
elif isinstance(result, str): | |
return result | |
except Exception: | |
continue | |
return "LLM error: No advanced conversational models succeeded." | |
# === TASK-SPECIFIC HANDLERS (expandable) === | |
def handle_grocery_vegetables(question): | |
"""Extract vegetables from a list in the question.""" | |
match = re.search(r"list I have so far: (.*)", question) | |
if not match: | |
return "Could not parse item list." | |
items = [i.strip().lower() for i in match.group(1).split(",")] | |
vegetables = [ | |
"broccoli", "celery", "lettuce", "zucchini", "green beans", "sweet potatoes", "bell pepper" | |
] | |
result = sorted([item for item in items if item in vegetables]) | |
return ", ".join(result) | |
# === MAIN AGENT === | |
class SmartAgent: | |
def __call__(self, question: str) -> str: | |
# Task: Grocery vegetables | |
if "vegetables" in question.lower() and "categorize" in question.lower(): | |
return handle_grocery_vegetables(question) | |
# Download and analyze any file links | |
links = extract_links(question) | |
for url in links: | |
if url.endswith((".xlsx", ".xls", ".csv", ".pdf", ".txt")): | |
local = download_file(url) | |
if local: | |
return analyze_file(local) | |
elif "youtube.com" in url or "youtu.be" in url: | |
return analyze_youtube(url) | |
else: | |
return analyze_webpage(url) | |
# Wikipedia | |
wiki_result = wikipedia_search(question) | |
if wiki_result: | |
return wiki_result | |
# DuckDuckGo | |
ddg_result = duckduckgo_search(question) | |
if ddg_result: | |
return ddg_result | |
# Top LLMs | |
return llm_conversational(question) | |
# === SUBMISSION LOGIC === | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = profile.username | |
else: | |
return "Please Login to Hugging Face with the button.", None | |
questions_url = f"{DEFAULT_API_URL}/questions" | |
submit_url = f"{DEFAULT_API_URL}/submit" | |
agent = SmartAgent() | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
try: | |
response = requests.get(questions_url, timeout=20) | |
response.raise_for_status() | |
questions_data = response.json() | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
results_log = [] | |
answers_payload = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or not question_text: | |
continue | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=90) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except Exception as e: | |
return f"Submission Failed: {e}", pd.DataFrame(results_log) | |
# === GRADIO UI === | |
with gr.Blocks() as demo: | |
gr.Markdown("# Smart Agent Evaluation Runner") | |
gr.Markdown(""" | |
**Instructions:** | |
1. Clone this space, define your agent logic, tools, packages, etc. | |
2. Log in to Hugging Face. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
""") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
demo.launch(debug=True, share=False) | |