Spaces:
Running
Running
File size: 10,342 Bytes
10e9b7d 043cb3a 10e9b7d eccf8e4 3c4371f 4c42a76 808eedd 4c42a76 043cb3a d6e0d11 8dce943 d6e0d11 3db6293 d6e0d11 ef7e6c0 d6e0d11 e79359e f35f3f0 e79359e d6e0d11 043cb3a d6e0d11 043cb3a d6e0d11 043cb3a d6e0d11 043cb3a d6e0d11 043cb3a d6e0d11 40f658d d6e0d11 40f658d d6e0d11 40f658d d6e0d11 40f658d d6e0d11 40f658d 29032bf 043cb3a d6e0d11 043cb3a d6e0d11 043cb3a d6e0d11 5bb8fe1 043cb3a 808eedd 043cb3a e80aab9 d6e0d11 ef7e6c0 40f658d d6e0d11 40f658d ef7e6c0 d6e0d11 40f658d d6e0d11 ef7e6c0 d6e0d11 e79359e d6e0d11 8dce943 d6e0d11 043cb3a d6e0d11 043cb3a d6e0d11 ef7e6c0 d6e0d11 5bb8fe1 4c42a76 808eedd 4c42a76 5bb8fe1 4c42a76 d6e0d11 4c42a76 eccf8e4 d6e0d11 808eedd 8dce943 4c42a76 5bb8fe1 808eedd 31243f4 808eedd e79359e 808eedd 5bb8fe1 4c42a76 d6e0d11 808eedd 4c42a76 808eedd 4c42a76 5bb8fe1 d6e0d11 5bb8fe1 808eedd 7e4a06b 31243f4 808eedd 4c42a76 e80aab9 4c42a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os
import re
import gradio as gr
import requests
import pandas as pd
from huggingface_hub import InferenceClient
from duckduckgo_search import DDGS
import wikipediaapi
from bs4 import BeautifulSoup
import pdfplumber
import pytube
# === CONFIG ===
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
HF_TOKEN = os.environ.get("HF_TOKEN")
ADVANCED_MODELS = [
"deepseek-ai/DeepSeek-R1",
"deepseek-ai/DeepSeek-V2-Chat",
"Qwen/Qwen2-72B-Instruct",
"mistralai/Mixtral-8x22B-Instruct-v0.1",
"meta-llama/Meta-Llama-3-70B-Instruct"
]
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 (chockqoteewy@gmail.com)")
# === UTILS ===
def extract_links(text):
if not text:
return []
url_pattern = re.compile(r'(https?://[^\s\)\],]+)')
return url_pattern.findall(text)
def download_file(url, out_dir="tmp_files"):
os.makedirs(out_dir, exist_ok=True)
filename = url.split("/")[-1].split("?")[0]
local_path = os.path.join(out_dir, filename)
try:
r = requests.get(url, timeout=30)
r.raise_for_status()
with open(local_path, "wb") as f:
f.write(r.content)
return local_path
except Exception:
return None
def summarize_excel(file_path):
try:
df = pd.read_excel(file_path)
# Heuristic: Sum column with "total" or "sales" in name, excluding drinks
df.columns = [col.lower() for col in df.columns]
item_col = next((col for col in df.columns if "item" in col or "menu" in col), None)
total_col = next((col for col in df.columns if "total" in col or "sales" in col or "amount" in col), None)
if not item_col or not total_col:
return f"Excel columns: {', '.join(df.columns)}. Could not find item/total columns."
df_food = df[~df[item_col].str.lower().str.contains("drink|beverage|soda|juice", na=False)]
total = df_food[total_col].astype(float).sum()
return f"{total:.2f}"
except Exception as e:
return f"Excel error: {e}"
def summarize_csv(file_path):
try:
df = pd.read_csv(file_path)
# Same logic as summarize_excel
df.columns = [col.lower() for col in df.columns]
item_col = next((col for col in df.columns if "item" in col or "menu" in col), None)
total_col = next((col for col in df.columns if "total" in col or "sales" in col or "amount" in col), None)
if not item_col or not total_col:
return f"CSV columns: {', '.join(df.columns)}. Could not find item/total columns."
df_food = df[~df[item_col].str.lower().str.contains("drink|beverage|soda|juice", na=False)]
total = df_food[total_col].astype(float).sum()
return f"{total:.2f}"
except Exception as e:
return f"CSV error: {e}"
def summarize_pdf(file_path):
try:
with pdfplumber.open(file_path) as pdf:
first_page = pdf.pages[0].extract_text()
return f"PDF text sample: {first_page[:1000]}"
except Exception as e:
return f"PDF error: {e}"
def summarize_txt(file_path):
try:
with open(file_path, encoding='utf-8') as f:
txt = f.read()
return f"TXT file sample: {txt[:1000]}"
except Exception as e:
return f"TXT error: {e}"
def analyze_file(file_path):
file_path = file_path.lower()
if file_path.endswith((".xlsx", ".xls")):
return summarize_excel(file_path)
elif file_path.endswith(".csv"):
return summarize_csv(file_path)
elif file_path.endswith(".pdf"):
return summarize_pdf(file_path)
elif file_path.endswith(".txt"):
return summarize_txt(file_path)
else:
return f"Unsupported file type: {file_path}"
def analyze_webpage(url):
try:
r = requests.get(url, timeout=20)
soup = BeautifulSoup(r.text, "lxml")
title = soup.title.string if soup.title else "No title"
paragraphs = [p.get_text() for p in soup.find_all("p")]
article_sample = "\n".join(paragraphs[:5])
return f"Webpage Title: {title}\nContent sample:\n{article_sample[:1000]}"
except Exception as e:
return f"Webpage error: {e}"
def analyze_youtube(url):
try:
yt = pytube.YouTube(url)
captions = yt.captions.get_by_language_code('en')
if captions:
text = captions.generate_srt_captions()
return f"YouTube Transcript sample: {text[:800]}"
else:
return f"No English captions found for {url}"
except Exception as e:
return f"YouTube error: {e}"
def duckduckgo_search(query):
try:
with DDGS() as ddgs:
results = [r for r in ddgs.text(query, max_results=3)]
bodies = [r.get("body", "") for r in results if r.get("body")]
return "\n".join(bodies) if bodies else None
except Exception:
return None
def wikipedia_search(query):
try:
page = wiki_api.page(query)
if page.exists() and page.summary:
return page.summary
except Exception:
return None
return None
def llm_conversational(query):
for model_id in ADVANCED_MODELS:
try:
hf_client = InferenceClient(model_id, token=HF_TOKEN)
result = hf_client.conversational(
messages=[{"role": "user", "content": query}],
max_new_tokens=384,
)
if isinstance(result, dict) and "generated_text" in result:
return result["generated_text"]
elif hasattr(result, "generated_text"):
return result.generated_text
elif isinstance(result, str):
return result
except Exception:
continue
return "LLM error: No advanced conversational models succeeded."
# === TASK-SPECIFIC HANDLERS (expandable) ===
def handle_grocery_vegetables(question):
"""Extract vegetables from a list in the question."""
match = re.search(r"list I have so far: (.*)", question)
if not match:
return "Could not parse item list."
items = [i.strip().lower() for i in match.group(1).split(",")]
vegetables = [
"broccoli", "celery", "lettuce", "zucchini", "green beans", "sweet potatoes", "bell pepper"
]
result = sorted([item for item in items if item in vegetables])
return ", ".join(result)
# === MAIN AGENT ===
class SmartAgent:
def __call__(self, question: str) -> str:
# Task: Grocery vegetables
if "vegetables" in question.lower() and "categorize" in question.lower():
return handle_grocery_vegetables(question)
# Download and analyze any file links
links = extract_links(question)
for url in links:
if url.endswith((".xlsx", ".xls", ".csv", ".pdf", ".txt")):
local = download_file(url)
if local:
return analyze_file(local)
elif "youtube.com" in url or "youtu.be" in url:
return analyze_youtube(url)
else:
return analyze_webpage(url)
# Wikipedia
wiki_result = wikipedia_search(question)
if wiki_result:
return wiki_result
# DuckDuckGo
ddg_result = duckduckgo_search(question)
if ddg_result:
return ddg_result
# Top LLMs
return llm_conversational(question)
# === SUBMISSION LOGIC ===
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
else:
return "Please Login to Hugging Face with the button.", None
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
agent = SmartAgent()
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or not question_text:
continue
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
response = requests.post(submit_url, json=submission_data, timeout=90)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# === GRADIO UI ===
with gr.Blocks() as demo:
gr.Markdown("# Smart Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space, define your agent logic, tools, packages, etc.
2. Log in to Hugging Face.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
demo.launch(debug=True, share=False)
|