Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=False, | |
allow_methods=["*"], | |
allow_headers=["*"] | |
) | |
model_name = "togethercomputer/RedPajama-INCITE-7B-Base" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
class PromptRequest(BaseModel): | |
prompt: str | |
async def generate_story(req: PromptRequest): | |
prompt = req.prompt.strip() | |
if not prompt: | |
raise HTTPException(status_code=400, detail="Prompt must not be empty") | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=200, | |
do_sample=True, | |
top_p=0.9, | |
temperature=0.85, | |
repetition_penalty=1.2 | |
) | |
story = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return {"story": story} | |