File size: 1,137 Bytes
d86fc01
 
 
7d1e868
 
d86fc01
 
 
7d1e868
 
 
 
 
d86fc01
 
a4c01fe
06534f9
7d1e868
1c18d40
b87d488
 
52808f5
360a4d3
b87d488
06534f9
 
b87d488
06534f9
 
b87d488
 
06534f9
a4c01fe
06534f9
7d1e868
 
b87d488
7d1e868
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=False,
    allow_methods=["*"],
    allow_headers=["*"]
)

model_name = "togethercomputer/RedPajama-INCITE-7B-Base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

class PromptRequest(BaseModel):
    prompt: str

@app.post("/api/generate-story")
async def generate_story(req: PromptRequest):
    prompt = req.prompt.strip()
    if not prompt:
        raise HTTPException(status_code=400, detail="Prompt must not be empty")

    inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
    outputs = model.generate(
        **inputs,
        max_new_tokens=200,
        do_sample=True,
        top_p=0.9,
        temperature=0.85,
        repetition_penalty=1.2
    )
    story = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return {"story": story}