Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import traceback
|
6 |
+
from typing import Tuple, Dict, Any, Optional
|
7 |
+
import tempfile
|
8 |
+
import io
|
9 |
+
import datetime
|
10 |
+
|
11 |
+
class FeedbackTransformer:
|
12 |
+
"""
|
13 |
+
A class to transform feedback data with topic and sentiment columns
|
14 |
+
into a binary format where each topic is a separate column.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self,
|
18 |
+
topic_prefix="TOPIC_",
|
19 |
+
sentiment_prefix="SENTIMENT_",
|
20 |
+
category_prefix="Categories:",
|
21 |
+
text_column="TEXT",
|
22 |
+
recommendation_column="Q4_Weiterempfehlung"):
|
23 |
+
"""
|
24 |
+
Initialize the FeedbackTransformer with column specifications.
|
25 |
+
"""
|
26 |
+
self.topic_prefix = topic_prefix
|
27 |
+
self.sentiment_prefix = sentiment_prefix
|
28 |
+
self.category_prefix = category_prefix
|
29 |
+
self.text_column = text_column
|
30 |
+
self.recommendation_column = recommendation_column
|
31 |
+
self.data = None
|
32 |
+
self.transformed_data = None
|
33 |
+
self.topic_cols = []
|
34 |
+
self.sentiment_cols = []
|
35 |
+
self.category_cols = []
|
36 |
+
self.unique_topics = set()
|
37 |
+
self.file_name = None
|
38 |
+
self.original_filename = None
|
39 |
+
self.selected_columns = [] # Store columns selected for inclusion
|
40 |
+
|
41 |
+
def load_data(self, file_obj):
|
42 |
+
"""
|
43 |
+
Load data from the uploaded file object.
|
44 |
+
"""
|
45 |
+
if file_obj is None:
|
46 |
+
raise ValueError("No file uploaded")
|
47 |
+
|
48 |
+
# Get file extension and store original filename
|
49 |
+
file_name = file_obj if isinstance(file_obj, str) else (file_obj.name if hasattr(file_obj, 'name') else 'unknown')
|
50 |
+
self.original_filename = os.path.splitext(os.path.basename(file_name))[0]
|
51 |
+
_, file_ext = os.path.splitext(file_name)
|
52 |
+
|
53 |
+
# Read the data based on file type
|
54 |
+
try:
|
55 |
+
if file_ext.lower() in ['.xlsx', '.xls']:
|
56 |
+
self.data = pd.read_excel(file_obj)
|
57 |
+
elif file_ext.lower() == '.csv':
|
58 |
+
# Try comma delimiter first
|
59 |
+
try:
|
60 |
+
self.data = pd.read_csv(file_obj, encoding='utf-8')
|
61 |
+
except:
|
62 |
+
# If comma fails, try tab delimiter
|
63 |
+
self.data = pd.read_csv(file_obj, sep='\t', encoding='utf-8')
|
64 |
+
else:
|
65 |
+
# Default to tab-delimited
|
66 |
+
self.data = pd.read_csv(file_obj, sep='\t', encoding='utf-8')
|
67 |
+
except Exception as e:
|
68 |
+
raise ValueError(f"Error reading file: {str(e)}")
|
69 |
+
|
70 |
+
return len(self.data), len(self.data.columns)
|
71 |
+
|
72 |
+
def identify_columns(self):
|
73 |
+
"""
|
74 |
+
Identify topic, category, and sentiment columns in the data.
|
75 |
+
"""
|
76 |
+
if self.data is None:
|
77 |
+
raise ValueError("Data not loaded")
|
78 |
+
|
79 |
+
# Extract columns based on prefixes
|
80 |
+
self.topic_cols = [col for col in self.data.columns if self.topic_prefix in col]
|
81 |
+
self.sentiment_cols = [col for col in self.data.columns if self.sentiment_prefix in col]
|
82 |
+
self.category_cols = [col for col in self.data.columns if col.startswith(self.category_prefix)]
|
83 |
+
|
84 |
+
# If no columns found with specified prefixes, return all columns for manual selection
|
85 |
+
all_cols = list(self.data.columns)
|
86 |
+
|
87 |
+
return {
|
88 |
+
'topic_cols': self.topic_cols,
|
89 |
+
'sentiment_cols': self.sentiment_cols,
|
90 |
+
'category_cols': self.category_cols,
|
91 |
+
'all_columns': all_cols
|
92 |
+
}
|
93 |
+
|
94 |
+
def extract_unique_topics(self):
|
95 |
+
"""
|
96 |
+
Extract all unique topics from the topic columns.
|
97 |
+
"""
|
98 |
+
self.unique_topics = set()
|
99 |
+
|
100 |
+
# Extract from topic columns
|
101 |
+
for col in self.topic_cols:
|
102 |
+
self.unique_topics.update(self.data[col].dropna().unique())
|
103 |
+
|
104 |
+
# Also extract from category columns if they exist
|
105 |
+
for col in self.category_cols:
|
106 |
+
self.unique_topics.update(self.data[col].dropna().unique())
|
107 |
+
|
108 |
+
# Remove empty topics
|
109 |
+
self.unique_topics = {t for t in self.unique_topics if isinstance(t, str) and t.strip()}
|
110 |
+
|
111 |
+
return len(self.unique_topics)
|
112 |
+
|
113 |
+
@staticmethod
|
114 |
+
def create_column_name(topic):
|
115 |
+
"""
|
116 |
+
Create a standardized column name from a topic string.
|
117 |
+
"""
|
118 |
+
# Remove special characters and standardize
|
119 |
+
topic_clean = str(topic).strip()
|
120 |
+
# Remove brackets and special characters
|
121 |
+
topic_clean = topic_clean.replace('[', '').replace(']', '').replace('(', '').replace(')', '')
|
122 |
+
topic_clean = topic_clean.replace('**', '').replace('*', '')
|
123 |
+
topic_clean = topic_clean.replace('.', '_').replace(' ', '_').replace('&', 'and')
|
124 |
+
topic_clean = topic_clean.replace(':', '_').replace('-', '_').replace('/', '_')
|
125 |
+
# Remove multiple underscores
|
126 |
+
while '__' in topic_clean:
|
127 |
+
topic_clean = topic_clean.replace('__', '_')
|
128 |
+
return topic_clean.lower().strip('_')
|
129 |
+
|
130 |
+
def set_selected_columns(self, selected_columns):
|
131 |
+
"""
|
132 |
+
Set which original columns should be included in the output.
|
133 |
+
"""
|
134 |
+
self.selected_columns = selected_columns if selected_columns else []
|
135 |
+
|
136 |
+
def transform_data(self):
|
137 |
+
"""
|
138 |
+
Transform the data into binary topic columns with sentiment values.
|
139 |
+
"""
|
140 |
+
if not self.unique_topics:
|
141 |
+
self.extract_unique_topics()
|
142 |
+
|
143 |
+
# Create output dataframe starting with feedback_id
|
144 |
+
self.transformed_data = pd.DataFrame({'feedback_id': range(1, len(self.data) + 1)})
|
145 |
+
|
146 |
+
# Add selected original columns first (right after feedback_id)
|
147 |
+
for col in self.selected_columns:
|
148 |
+
if col in self.data.columns:
|
149 |
+
self.transformed_data[col] = self.data[col]
|
150 |
+
|
151 |
+
# Initialize all topic columns to 0
|
152 |
+
for topic in sorted(self.unique_topics):
|
153 |
+
topic_col = self.create_column_name(topic)
|
154 |
+
self.transformed_data[topic_col] = 0
|
155 |
+
self.transformed_data[f'{topic_col}_sentiment'] = None
|
156 |
+
|
157 |
+
# Fill in the data from topic columns
|
158 |
+
for idx, row in self.data.iterrows():
|
159 |
+
# Process topic columns with sentiments
|
160 |
+
for i, t_col in enumerate(self.topic_cols):
|
161 |
+
topic = row.get(t_col)
|
162 |
+
|
163 |
+
# Find corresponding sentiment column
|
164 |
+
if i < len(self.sentiment_cols):
|
165 |
+
sentiment = row.get(self.sentiment_cols[i])
|
166 |
+
else:
|
167 |
+
sentiment = None
|
168 |
+
|
169 |
+
if pd.notna(topic) and isinstance(topic, str) and topic.strip():
|
170 |
+
topic_col = self.create_column_name(topic)
|
171 |
+
if topic_col in self.transformed_data.columns:
|
172 |
+
self.transformed_data.loc[idx, topic_col] = 1
|
173 |
+
|
174 |
+
# Convert sentiment to numeric value
|
175 |
+
if pd.notna(sentiment) and isinstance(sentiment, str):
|
176 |
+
sentiment_lower = sentiment.lower()
|
177 |
+
if 'positive' in sentiment_lower:
|
178 |
+
self.transformed_data.loc[idx, f'{topic_col}_sentiment'] = 1
|
179 |
+
elif 'negative' in sentiment_lower:
|
180 |
+
self.transformed_data.loc[idx, f'{topic_col}_sentiment'] = 0
|
181 |
+
elif 'neutral' in sentiment_lower:
|
182 |
+
self.transformed_data.loc[idx, f'{topic_col}_sentiment'] = 0.5
|
183 |
+
|
184 |
+
# Process category columns (these typically don't have sentiments)
|
185 |
+
for c_col in self.category_cols:
|
186 |
+
category = row.get(c_col)
|
187 |
+
if pd.notna(category) and isinstance(category, str) and category.strip():
|
188 |
+
category_col = self.create_column_name(category)
|
189 |
+
if category_col in self.transformed_data.columns:
|
190 |
+
self.transformed_data.loc[idx, category_col] = 1
|
191 |
+
|
192 |
+
return self.transformed_data.shape
|
193 |
+
|
194 |
+
def analyze_data(self):
|
195 |
+
"""
|
196 |
+
Analyze the transformed data to provide insights.
|
197 |
+
"""
|
198 |
+
if self.transformed_data is None:
|
199 |
+
raise ValueError("No transformed data to analyze")
|
200 |
+
|
201 |
+
# Identify topic columns (exclude feedback_id, selected original columns, and sentiment columns)
|
202 |
+
excluded_cols = ['feedback_id'] + self.selected_columns
|
203 |
+
topic_cols = [col for col in self.transformed_data.columns
|
204 |
+
if col not in excluded_cols and not col.endswith('_sentiment')]
|
205 |
+
|
206 |
+
# Count occurrences of each topic
|
207 |
+
topic_counts = {}
|
208 |
+
for topic in topic_cols:
|
209 |
+
topic_counts[topic] = self.transformed_data[topic].sum()
|
210 |
+
|
211 |
+
# Sort topics by frequency
|
212 |
+
sorted_topics = sorted(topic_counts.items(), key=lambda x: x[1], reverse=True)
|
213 |
+
|
214 |
+
# Prepare analysis summary
|
215 |
+
analysis_text = f"**Analysis Results**\n\n"
|
216 |
+
analysis_text += f"Total feedbacks: {len(self.transformed_data)}\n"
|
217 |
+
analysis_text += f"Selected original columns: {len(self.selected_columns)}\n"
|
218 |
+
analysis_text += f"Unique topics: {len(topic_cols)}\n\n"
|
219 |
+
|
220 |
+
if self.selected_columns:
|
221 |
+
analysis_text += f"**Included Original Columns:** {', '.join(self.selected_columns)}\n\n"
|
222 |
+
|
223 |
+
analysis_text += "**Top 10 Most Frequent Topics:**\n"
|
224 |
+
for topic, count in sorted_topics[:10]:
|
225 |
+
analysis_text += f"- {topic}: {count} occurrences\n"
|
226 |
+
|
227 |
+
# Calculate sentiment distributions for top topics
|
228 |
+
analysis_text += "\n**Sentiment Distributions for Top 5 Topics:**\n"
|
229 |
+
for topic, _ in sorted_topics[:5]:
|
230 |
+
sentiment_col = f"{topic}_sentiment"
|
231 |
+
if sentiment_col in self.transformed_data.columns:
|
232 |
+
# Filter rows where the topic is present
|
233 |
+
topic_rows = self.transformed_data[self.transformed_data[topic] == 1]
|
234 |
+
|
235 |
+
positive = (topic_rows[sentiment_col] == 1.0).sum()
|
236 |
+
negative = (topic_rows[sentiment_col] == 0.0).sum()
|
237 |
+
neutral = (topic_rows[sentiment_col] == 0.5).sum()
|
238 |
+
|
239 |
+
total = positive + negative + neutral
|
240 |
+
|
241 |
+
if total > 0:
|
242 |
+
analysis_text += f"\n{topic} ({total} occurrences):\n"
|
243 |
+
analysis_text += f" - Positive: {positive} ({positive/total*100:.1f}%)\n"
|
244 |
+
analysis_text += f" - Negative: {negative} ({negative/total*100:.1f}%)\n"
|
245 |
+
analysis_text += f" - Neutral: {neutral} ({neutral/total*100:.1f}%)\n"
|
246 |
+
|
247 |
+
# Calculate number of topics per feedback
|
248 |
+
self.transformed_data['topic_count'] = self.transformed_data[topic_cols].sum(axis=1)
|
249 |
+
avg_topics = self.transformed_data['topic_count'].mean()
|
250 |
+
max_topics = self.transformed_data['topic_count'].max()
|
251 |
+
|
252 |
+
analysis_text += f"\n**Topics per Feedback:**\n"
|
253 |
+
analysis_text += f"- Average: {avg_topics:.2f}\n"
|
254 |
+
analysis_text += f"- Maximum: {max_topics}\n"
|
255 |
+
|
256 |
+
# Remove the temporary topic_count column
|
257 |
+
self.transformed_data.drop('topic_count', axis=1, inplace=True)
|
258 |
+
|
259 |
+
return analysis_text
|
260 |
+
|
261 |
+
def save_transformed_data(self, output_format='xlsx'):
|
262 |
+
"""
|
263 |
+
Save the transformed data and return the file path.
|
264 |
+
Modified to work properly with Hugging Face Spaces downloads.
|
265 |
+
"""
|
266 |
+
if self.transformed_data is None:
|
267 |
+
raise ValueError("No transformed data to save")
|
268 |
+
|
269 |
+
# Create filename with original filename prefix and timestamp
|
270 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
271 |
+
|
272 |
+
# Use original filename as prefix, or fallback to 'transformed_feedback' if not available
|
273 |
+
prefix = self.original_filename if self.original_filename else 'transformed_feedback'
|
274 |
+
|
275 |
+
if output_format == 'xlsx':
|
276 |
+
filename = f"{prefix}_transformed_{timestamp}.xlsx"
|
277 |
+
# Create temporary file that Gradio can handle
|
278 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
|
279 |
+
self.transformed_data.to_excel(temp_file.name, index=False)
|
280 |
+
temp_file.close()
|
281 |
+
|
282 |
+
# Rename the temporary file to have a meaningful name
|
283 |
+
final_path = os.path.join(tempfile.gettempdir(), filename)
|
284 |
+
if os.path.exists(final_path):
|
285 |
+
os.remove(final_path)
|
286 |
+
os.rename(temp_file.name, final_path)
|
287 |
+
|
288 |
+
else: # csv
|
289 |
+
filename = f"{prefix}_transformed_{timestamp}.csv"
|
290 |
+
# Create temporary file that Gradio can handle
|
291 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
|
292 |
+
self.transformed_data.to_csv(temp_file.name, index=False)
|
293 |
+
temp_file.close()
|
294 |
+
|
295 |
+
# Rename the temporary file to have a meaningful name
|
296 |
+
final_path = os.path.join(tempfile.gettempdir(), filename)
|
297 |
+
if os.path.exists(final_path):
|
298 |
+
os.remove(final_path)
|
299 |
+
os.rename(temp_file.name, final_path)
|
300 |
+
|
301 |
+
# Verify file was created and is readable
|
302 |
+
if not os.path.exists(final_path):
|
303 |
+
raise ValueError(f"Failed to create output file: {final_path}")
|
304 |
+
|
305 |
+
return final_path
|
306 |
+
|
307 |
+
|
308 |
+
# Gradio interface functions
|
309 |
+
def get_column_selector(file_obj):
|
310 |
+
"""
|
311 |
+
Get a combined column preview and selector interface.
|
312 |
+
"""
|
313 |
+
try:
|
314 |
+
if file_obj is None:
|
315 |
+
return gr.CheckboxGroup(
|
316 |
+
choices=[],
|
317 |
+
value=[],
|
318 |
+
label="π Select Columns to Include",
|
319 |
+
info="Upload a file first to see available columns"
|
320 |
+
)
|
321 |
+
|
322 |
+
# Read first few rows to get column names
|
323 |
+
file_name = file_obj if isinstance(file_obj, str) else (file_obj.name if hasattr(file_obj, 'name') else 'unknown')
|
324 |
+
_, file_ext = os.path.splitext(file_name)
|
325 |
+
|
326 |
+
if file_ext.lower() in ['.xlsx', '.xls']:
|
327 |
+
df = pd.read_excel(file_obj, nrows=5)
|
328 |
+
elif file_ext.lower() == '.csv':
|
329 |
+
try:
|
330 |
+
df = pd.read_csv(file_obj, nrows=5)
|
331 |
+
except:
|
332 |
+
df = pd.read_csv(file_obj, sep='\t', nrows=5)
|
333 |
+
else:
|
334 |
+
df = pd.read_csv(file_obj, sep='\t', nrows=5)
|
335 |
+
|
336 |
+
columns = list(df.columns)
|
337 |
+
|
338 |
+
# Create column display with indices for easier reference
|
339 |
+
column_choices = [f"{i+1:2d}. {col}" for i, col in enumerate(columns)]
|
340 |
+
|
341 |
+
# Return updated CheckboxGroup with numbered columns and individual rows
|
342 |
+
return gr.CheckboxGroup(
|
343 |
+
choices=column_choices,
|
344 |
+
value=[], # No columns selected by default
|
345 |
+
label=f"π Select Columns to Include ({len(columns)} available)",
|
346 |
+
info="Choose which original columns to include in the transformed file (in addition to feedback_id). Columns are numbered for easy reference.",
|
347 |
+
elem_classes=["column-selector"] # Add CSS class for styling
|
348 |
+
)
|
349 |
+
|
350 |
+
except Exception as e:
|
351 |
+
return gr.CheckboxGroup(
|
352 |
+
choices=[],
|
353 |
+
value=[],
|
354 |
+
label="π Select Columns to Include",
|
355 |
+
info=f"Error reading file: {str(e)}"
|
356 |
+
)
|
357 |
+
|
358 |
+
|
359 |
+
def extract_column_names(selected_display_names):
|
360 |
+
"""
|
361 |
+
Extract actual column names from the numbered display format.
|
362 |
+
"""
|
363 |
+
if not selected_display_names:
|
364 |
+
return []
|
365 |
+
|
366 |
+
actual_names = []
|
367 |
+
for display_name in selected_display_names:
|
368 |
+
# Remove the number prefix (e.g., "1. Column Name" -> "Column Name")
|
369 |
+
if '. ' in display_name:
|
370 |
+
actual_name = display_name.split('. ', 1)[1]
|
371 |
+
actual_names.append(actual_name)
|
372 |
+
else:
|
373 |
+
actual_names.append(display_name)
|
374 |
+
|
375 |
+
return actual_names
|
376 |
+
|
377 |
+
|
378 |
+
def process_file(file_obj, topic_prefix, sentiment_prefix, category_prefix,
|
379 |
+
text_column, recommendation_column, output_format, analyze_data, selected_columns):
|
380 |
+
"""
|
381 |
+
Main processing function for Gradio interface.
|
382 |
+
"""
|
383 |
+
try:
|
384 |
+
# Extract actual column names from display format
|
385 |
+
actual_column_names = extract_column_names(selected_columns)
|
386 |
+
|
387 |
+
# Initialize transformer
|
388 |
+
transformer = FeedbackTransformer(
|
389 |
+
topic_prefix=topic_prefix,
|
390 |
+
sentiment_prefix=sentiment_prefix,
|
391 |
+
category_prefix=category_prefix,
|
392 |
+
text_column=text_column,
|
393 |
+
recommendation_column=recommendation_column
|
394 |
+
)
|
395 |
+
|
396 |
+
# Load data
|
397 |
+
rows, cols = transformer.load_data(file_obj)
|
398 |
+
status_msg = f"β
Loaded {rows} rows and {cols} columns\n"
|
399 |
+
|
400 |
+
# Set selected columns for inclusion
|
401 |
+
transformer.set_selected_columns(actual_column_names)
|
402 |
+
status_msg += f"π Selected {len(actual_column_names)} original columns for inclusion\n"
|
403 |
+
if actual_column_names:
|
404 |
+
status_msg += f" Selected columns: {', '.join(actual_column_names)}\n"
|
405 |
+
|
406 |
+
# Identify columns
|
407 |
+
col_info = transformer.identify_columns()
|
408 |
+
status_msg += f"\nπ Found columns:\n"
|
409 |
+
status_msg += f"- Topic columns: {len(col_info['topic_cols'])}\n"
|
410 |
+
status_msg += f"- Sentiment columns: {len(col_info['sentiment_cols'])}\n"
|
411 |
+
status_msg += f"- Category columns: {len(col_info['category_cols'])}\n"
|
412 |
+
|
413 |
+
# Extract unique topics
|
414 |
+
num_topics = transformer.extract_unique_topics()
|
415 |
+
status_msg += f"\nπ― Found {num_topics} unique topics\n"
|
416 |
+
|
417 |
+
# Transform data
|
418 |
+
shape = transformer.transform_data()
|
419 |
+
status_msg += f"\n⨠Transformed data shape: {shape[0]} rows à {shape[1]} columns\n"
|
420 |
+
|
421 |
+
# Analyze if requested
|
422 |
+
analysis_result = ""
|
423 |
+
if analyze_data:
|
424 |
+
analysis_result = transformer.analyze_data()
|
425 |
+
|
426 |
+
# Save transformed data
|
427 |
+
output_file = transformer.save_transformed_data(output_format)
|
428 |
+
status_msg += f"\nπΎ File saved successfully: {os.path.basename(output_file)}\n"
|
429 |
+
|
430 |
+
return status_msg, analysis_result, output_file
|
431 |
+
|
432 |
+
except Exception as e:
|
433 |
+
error_msg = f"β Error: {str(e)}\n\n{traceback.format_exc()}"
|
434 |
+
return error_msg, "", None
|
435 |
+
|
436 |
+
|
437 |
+
# Create Gradio interface
|
438 |
+
with gr.Blocks(title="Feedback Topic & Sentiment Transformer", css="""
|
439 |
+
.column-selector .form-check {
|
440 |
+
display: block !important;
|
441 |
+
margin-bottom: 8px !important;
|
442 |
+
}
|
443 |
+
.column-selector .form-check-input {
|
444 |
+
margin-right: 8px !important;
|
445 |
+
}
|
446 |
+
""") as demo:
|
447 |
+
gr.Markdown("""
|
448 |
+
# π Feedback Topic & Sentiment Transformer
|
449 |
+
Transform feedback data with topic and sentiment columns into a binary matrix format.
|
450 |
+
Each unique topic becomes a separate column with 0/1 values and associated sentiment scores.
|
451 |
+
### π Instructions:
|
452 |
+
1. Upload your Excel, CSV, or tab-delimited text file
|
453 |
+
2. Select which original columns to include in the output
|
454 |
+
3. Configure column prefixes (or use defaults)
|
455 |
+
4. Click "Transform Data" to process
|
456 |
+
5. Download the transformed file
|
457 |
+
""")
|
458 |
+
|
459 |
+
with gr.Row():
|
460 |
+
with gr.Column(scale=1):
|
461 |
+
# File upload
|
462 |
+
input_file = gr.File(
|
463 |
+
label="Upload Input File",
|
464 |
+
file_types=[".xlsx", ".xls", ".csv", ".txt"],
|
465 |
+
type="filepath"
|
466 |
+
)
|
467 |
+
|
468 |
+
# Combined column selector (replaces both preview and checkboxes)
|
469 |
+
gr.Markdown("### π Column Selection")
|
470 |
+
column_selector = gr.CheckboxGroup(
|
471 |
+
choices=[],
|
472 |
+
value=[],
|
473 |
+
label="Select Columns to Include",
|
474 |
+
info="Upload a file first to see available columns"
|
475 |
+
)
|
476 |
+
|
477 |
+
with gr.Column(scale=1):
|
478 |
+
# Configuration parameters
|
479 |
+
gr.Markdown("### βοΈ Configuration")
|
480 |
+
|
481 |
+
topic_prefix = gr.Textbox(
|
482 |
+
label="Topic Column Prefix",
|
483 |
+
value="[**WORKSHOP] SwissLife Taxonomy",
|
484 |
+
info="Prefix to identify topic columns"
|
485 |
+
)
|
486 |
+
|
487 |
+
sentiment_prefix = gr.Textbox(
|
488 |
+
label="Sentiment Column Prefix",
|
489 |
+
value="ABSA:",
|
490 |
+
info="Prefix to identify sentiment columns"
|
491 |
+
)
|
492 |
+
|
493 |
+
category_prefix = gr.Textbox(
|
494 |
+
label="Category Column Prefix",
|
495 |
+
value="Categories:",
|
496 |
+
info="Prefix to identify category columns"
|
497 |
+
)
|
498 |
+
|
499 |
+
text_column = gr.Textbox(
|
500 |
+
label="Text Column Name",
|
501 |
+
value="TEXT",
|
502 |
+
info="Column containing original feedback text (for reference only)"
|
503 |
+
)
|
504 |
+
|
505 |
+
recommendation_column = gr.Textbox(
|
506 |
+
label="Recommendation Column Name",
|
507 |
+
value="Q4_Weiterempfehlung",
|
508 |
+
info="Column containing recommendation scores (for reference only)"
|
509 |
+
)
|
510 |
+
|
511 |
+
output_format = gr.Radio(
|
512 |
+
label="Output Format",
|
513 |
+
choices=["xlsx", "csv"],
|
514 |
+
value="xlsx"
|
515 |
+
)
|
516 |
+
|
517 |
+
analyze_checkbox = gr.Checkbox(
|
518 |
+
label="Analyze transformed data",
|
519 |
+
value=True
|
520 |
+
)
|
521 |
+
|
522 |
+
# Transform button
|
523 |
+
transform_btn = gr.Button("π Transform Data", variant="primary", size="lg")
|
524 |
+
|
525 |
+
# Output sections
|
526 |
+
with gr.Row():
|
527 |
+
with gr.Column():
|
528 |
+
status_output = gr.Textbox(
|
529 |
+
label="Processing Status",
|
530 |
+
lines=10,
|
531 |
+
interactive=False
|
532 |
+
)
|
533 |
+
|
534 |
+
with gr.Column():
|
535 |
+
analysis_output = gr.Markdown(
|
536 |
+
label="Data Analysis"
|
537 |
+
)
|
538 |
+
|
539 |
+
# Download section - Modified for better download functionality
|
540 |
+
with gr.Row():
|
541 |
+
with gr.Column():
|
542 |
+
gr.Markdown("### π₯ Download Transformed File")
|
543 |
+
output_file = gr.File(
|
544 |
+
label="Transformed File",
|
545 |
+
interactive=False,
|
546 |
+
visible=True
|
547 |
+
)
|
548 |
+
|
549 |
+
# Event handlers
|
550 |
+
input_file.change(
|
551 |
+
fn=get_column_selector,
|
552 |
+
inputs=[input_file],
|
553 |
+
outputs=[column_selector]
|
554 |
+
)
|
555 |
+
|
556 |
+
transform_btn.click(
|
557 |
+
fn=process_file,
|
558 |
+
inputs=[
|
559 |
+
input_file,
|
560 |
+
topic_prefix,
|
561 |
+
sentiment_prefix,
|
562 |
+
category_prefix,
|
563 |
+
text_column,
|
564 |
+
recommendation_column,
|
565 |
+
output_format,
|
566 |
+
analyze_checkbox,
|
567 |
+
column_selector
|
568 |
+
],
|
569 |
+
outputs=[status_output, analysis_output, output_file]
|
570 |
+
)
|
571 |
+
|
572 |
+
# Examples section
|
573 |
+
gr.Markdown("""
|
574 |
+
### π Example Column Formats:
|
575 |
+
- **Topic columns**: `[**WORKSHOP] SwissLife Taxonomy(Kommentar) 1`, `[**WORKSHOP] SwissLife Taxonomy(Kommentar) 2`
|
576 |
+
- **Category columns**: `Categories:Topic1`, `Categories:Topic2`
|
577 |
+
- **Sentiment columns**: `ABSA:Sentiment1`, `ABSA:Sentiment2`
|
578 |
+
### π― Output Format:
|
579 |
+
- **feedback_id**: Unique identifier for each row
|
580 |
+
- **Selected original columns**: Any columns you selected from the original file
|
581 |
+
- **Topic columns**: Each unique topic becomes a column with values 0 (absent) or 1 (present)
|
582 |
+
- **Sentiment columns**: Each topic has an associated `_sentiment` column with values:
|
583 |
+
- 1.0 = Positive
|
584 |
+
- 0.5 = Neutral
|
585 |
+
- 0.0 = Negative
|
586 |
+
- **Output filename**: `[original_filename]_transformed_[timestamp].[format]`
|
587 |
+
### π‘ Tips:
|
588 |
+
- Use the numbered column list to easily identify and select columns
|
589 |
+
- The text and recommendation column names in configuration are now for reference only
|
590 |
+
- To include them in output, select them using the column checkboxes
|
591 |
+
- Click on the download button that appears after processing to download the file
|
592 |
+
""")
|
593 |
+
|
594 |
+
# Launch the app
|
595 |
+
if __name__ == "__main__":
|
596 |
+
demo.launch()
|