fedec65 commited on
Commit
1688162
·
verified ·
1 Parent(s): 0988638

Update app.py

Browse files

import gradio as gr
import pandas as pd
import numpy as np
import os
import traceback
from typing import Tuple, Dict, Any, Optional
import tempfile
import io
import datetime

class FeedbackTransformer:
"""
A class to transform feedback data with topic and sentiment columns
into a binary format where each topic is a separate column.
"""

def __init__(self,
topic_prefix="TOPIC_",
sentiment_prefix="SENTIMENT_",
category_prefix="Categories:",
text_column="TEXT",
recommendation_column="Q4_Weiterempfehlung"):
"""
Initialize the FeedbackTransformer with column specifications.
"""
self.topic_prefix = topic_prefix
self.sentiment_prefix = sentiment_prefix
self.category_prefix = category_prefix
self.text_column = text_column
self.recommendation_column = recommendation_column
self.data = None
self.transformed_data = None
self.topic_cols = []
self.sentiment_cols = []
self.category_cols = []
self.unique_topics = set()
self.file_name = None
self.original_filename = None
self.selected_columns = [] # Store columns selected for inclusion

def load_data(self, file_obj):
"""
Load data from the uploaded file object.
"""
if file_obj is None:
raise ValueError("No file uploaded")

# Get file extension and store original filename
file_name = file_obj if isinstance(file_obj, str) else (file_obj.name if hasattr(file_obj, 'name') else 'unknown')
self.original_filename = os.path.splitext(os.path.basename(file_name))[0]
_, file_ext = os.path.splitext(file_name)

# Read the data based on file type
try:
if file_ext.lower() in ['.xlsx', '.xls']:
self.data = pd.read_excel(file_obj)
elif file_ext.lower() == '.csv':
# Try comma delimiter first
try:
self.data = pd.read_csv(file_obj, encoding='utf-8')
except:
# If comma fails, try tab delimiter
self.data = pd.read_csv(file_obj, sep='\t', encoding='utf-8')
else:
# Default to tab-delimited
self.data = pd.read_csv(file_obj, sep='\t', encoding='utf-8')
except Exception as e:
raise ValueError(f"Error reading file: {str(e)}")

return len(self.data), len(self.data.columns)

def identify_columns(self):
"""
Identify topic, category, and sentiment columns in the data.
"""
if self.data is None:
raise ValueError("Data not loaded")

# Extract columns based on prefixes
self.topic_cols = [col for col in self.data.columns if self.topic_prefix in col]
self.sentiment_cols = [col for col in self.data.columns if self.sentiment_prefix in col]
self.category_cols = [col for col in self.data.columns if col.startswith(self.category_prefix)]

# If no columns found with specified prefixes, return all columns for manual selection
all_cols = list(self.data.columns)

return {
'topic_cols': self.topic_cols,
'sentiment_cols': self.sentiment_cols,
'category_cols': self.category_cols,
'all_columns': all_cols
}

def extract_unique_topics(self):
"""
Extract all unique topics from the topic columns.
"""
self.unique_topics = set()

# Extract from topic columns
for col in self.topic_cols:
self.unique_topics.update(self.data[col].dropna().unique())

# Also extract from category columns if they exist
for col in self.category_cols:
self.unique_topics.update(self.data[col].dropna().unique())

# Remove empty topics
self.unique_topics = {t for t in self.unique_topics if isinstance(t, str) and t.strip()}

return len(self.unique_topics)

@staticmethod
def create_column_name(topic):
"""
Create a standardized column name from a topic string.
"""
# Remove special characters and standardize
topic_clean = str(topic).strip()
# Remove brackets and special characters
topic_clean = topic_clean.replace('[', '').replace(']', '').replace('(', '').replace(')', '')
topic_clean = topic_clean.replace('**', '').replace('*', '')
topic_clean = topic_clean.replace('.', '_').replace(' ', '_').replace('&', 'and')
topic_clean = topic_clean.replace(':', '_').replace('-', '_').replace('/', '_')
# Remove multiple underscores
while '__' in topic_clean:
topic_clean = topic_clean.replace('__', '_')
return topic_clean.lower().strip('_')

def set_selected_columns(self, selected_columns):
"""
Set which original columns should be included in the output.
"""
self.selected_columns = selected_columns if selected_columns else []

def transform_data(self):
"""
Transform the data into binary topic columns with sentiment values.
"""
if not self.unique_topics:
self.extract_unique_topics()

# Create output dataframe starting with feedback_id
self.transformed_data = pd.DataFrame({'feedback_id': range(1, len(self.data) + 1)})

# Add selected original columns first (right after feedback_id)
for col in self.selected_columns:
if col in self.data.columns:
self.transformed_data[col] = self.data[col]

# Initialize all topic columns to 0
for topic in sorted(self.unique_topics):
topic_col = self.create_column_name(topic)
self.transformed_data[topic_col] = 0
self.transformed_data[f'{topic_col}_sentiment'] = None

# Fill in the data from topic columns
for idx, row in self.data.iterrows():
# Process topic columns with sentiments
for i, t_col in enumerate(self.topic_cols):
topic = row.get(t_col)

# Find corresponding sentiment column
if i < len(self.sentiment_cols):
sentiment = row.get(self.sentiment_cols[i])
else:
sentiment = None

if pd.notna(topic) and isinstance(topic, str) and topic.strip():
topic_col = self.create_column_name(topic)
if topic_col in self.transformed_data.columns:
self.transformed_data.loc[idx, topic_col] = 1

# Convert sentiment to numeric value
if pd.notna(sentiment) and isinstance(sentiment, str):
sentiment_lower = sentiment.lower()
if 'positive' in sentiment_lower:
self.transformed_data.loc[idx, f'{topic_col}_sentiment'] = 1
elif 'negative' in sentiment_lower:
self.transformed_data.loc[idx, f'{topic_col}_sentiment'] = 0
elif 'neutral' in sentiment_lower:
self.transformed_data.loc[idx, f'{topic_col}_sentiment'] = 0.5

# Process category columns (these typically don't have sentiments)
for c_col in self.category_cols:
category = row.get(c_col)
if pd.notna(category) and isinstance(category, str) and category.strip():
category_col = self.create_column_name(category)
if category_col in self.transformed_data.columns:
self.transformed_data.loc[idx, category_col] = 1

return self.transformed_data.shape

def analyze_data(self):
"""
Analyze the transformed data to provide insights.
"""
if self.transformed_data is None:
raise ValueError("No transformed data to analyze")

# Identify topic columns (exclude feedback_id, selected original columns, and sentiment columns)
excluded_cols = ['feedback_id'] + self.selected_columns
topic_cols = [col for col in self.transformed_data.columns
if col not in excluded_cols and not col.endswith('_sentiment')]

# Count occurrences of each topic
topic_counts = {}
for topic in topic_cols:
topic_counts[topic] = self.transformed_data[topic].sum()

# Sort topics by frequency
sorted_topics = sorted(topic_counts.items(), key=lambda x: x[1], reverse=True)

# Prepare analysis summary
analysis_text = f"**Analysis Results**\n\n"
analysis_text += f"Total feedbacks: {len(self.transformed_data)}\n"
analysis_text += f"Selected original columns: {len(self.selected_columns)}\n"
analysis_text += f"Unique topics: {len(topic_cols)}\n\n"

if self.selected_columns:
analysis_text += f"**Included Original Columns:** {', '.join(self.selected_columns)}\n\n"

analysis_text += "**Top 10 Most Frequent Topics:**\n"
for topic, count in sorted_topics[:10]:
analysis_text += f"- {topic}: {count} occurrences\n"

# Calculate sentiment distributions for top topics
analysis_text += "\n**Sentiment Distributions for Top 5 Topics:**\n"
for topic, _ in sorted_topics[:5]:
sentiment_col = f"{topic}_sentiment"
if sentiment_col in self.transformed_data.columns:
# Filter rows where the topic is present
topic_rows = self.transformed_data[self.transformed_data[topic] == 1]

positive = (topic_rows[sentiment_col] == 1.0).sum()
negative = (topic_rows[sentiment_col] == 0.0).sum()
neutral = (topic_rows[sentiment_col] == 0.5).sum()

total = positive + negative + neutral

if total > 0:
analysis_text += f"\n{topic} ({total} occurrences):\n"
analysis_text += f" - Positive: {pos

Files changed (1) hide show
  1. app.py +0 -592
app.py CHANGED
@@ -1,592 +0,0 @@
1
- import gradio as gr
2
- import pandas as pd
3
- import numpy as np
4
- import os
5
- import traceback
6
- from typing import Tuple, Dict, Any, Optional
7
- import tempfile
8
- import io
9
-
10
- class FeedbackTransformer:
11
- """
12
- A class to transform feedback data with topic and sentiment columns
13
- into a binary format where each topic is a separate column.
14
- """
15
-
16
- def __init__(self,
17
- topic_prefix="TOPIC_",
18
- sentiment_prefix="SENTIMENT_",
19
- category_prefix="Categories:",
20
- text_column="TEXT",
21
- recommendation_column="Q4_Weiterempfehlung"):
22
- """
23
- Initialize the FeedbackTransformer with column specifications.
24
- """
25
- self.topic_prefix = topic_prefix
26
- self.sentiment_prefix = sentiment_prefix
27
- self.category_prefix = category_prefix
28
- self.text_column = text_column
29
- self.recommendation_column = recommendation_column
30
- self.data = None
31
- self.transformed_data = None
32
- self.topic_cols = []
33
- self.sentiment_cols = []
34
- self.category_cols = []
35
- self.unique_topics = set()
36
- self.file_name = None
37
- self.original_filename = None
38
- self.selected_columns = [] # Store columns selected for inclusion
39
-
40
- def load_data(self, file_obj):
41
- """
42
- Load data from the uploaded file object.
43
- """
44
- if file_obj is None:
45
- raise ValueError("No file uploaded")
46
-
47
- # Get file extension and store original filename
48
- file_name = file_obj if isinstance(file_obj, str) else (file_obj.name if hasattr(file_obj, 'name') else 'unknown')
49
- self.original_filename = os.path.splitext(os.path.basename(file_name))[0]
50
- _, file_ext = os.path.splitext(file_name)
51
-
52
- # Read the data based on file type
53
- try:
54
- if file_ext.lower() in ['.xlsx', '.xls']:
55
- self.data = pd.read_excel(file_obj)
56
- elif file_ext.lower() == '.csv':
57
- # Try comma delimiter first
58
- try:
59
- self.data = pd.read_csv(file_obj, encoding='utf-8')
60
- except:
61
- # If comma fails, try tab delimiter
62
- self.data = pd.read_csv(file_obj, sep='\t', encoding='utf-8')
63
- else:
64
- # Default to tab-delimited
65
- self.data = pd.read_csv(file_obj, sep='\t', encoding='utf-8')
66
- except Exception as e:
67
- raise ValueError(f"Error reading file: {str(e)}")
68
-
69
- return len(self.data), len(self.data.columns)
70
-
71
- def identify_columns(self):
72
- """
73
- Identify topic, category, and sentiment columns in the data.
74
- """
75
- if self.data is None:
76
- raise ValueError("Data not loaded")
77
-
78
- # Extract columns based on prefixes
79
- self.topic_cols = [col for col in self.data.columns if self.topic_prefix in col]
80
- self.sentiment_cols = [col for col in self.data.columns if self.sentiment_prefix in col]
81
- self.category_cols = [col for col in self.data.columns if col.startswith(self.category_prefix)]
82
-
83
- # If no columns found with specified prefixes, return all columns for manual selection
84
- all_cols = list(self.data.columns)
85
-
86
- return {
87
- 'topic_cols': self.topic_cols,
88
- 'sentiment_cols': self.sentiment_cols,
89
- 'category_cols': self.category_cols,
90
- 'all_columns': all_cols
91
- }
92
-
93
- def extract_unique_topics(self):
94
- """
95
- Extract all unique topics from the topic columns.
96
- """
97
- self.unique_topics = set()
98
-
99
- # Extract from topic columns
100
- for col in self.topic_cols:
101
- self.unique_topics.update(self.data[col].dropna().unique())
102
-
103
- # Also extract from category columns if they exist
104
- for col in self.category_cols:
105
- self.unique_topics.update(self.data[col].dropna().unique())
106
-
107
- # Remove empty topics
108
- self.unique_topics = {t for t in self.unique_topics if isinstance(t, str) and t.strip()}
109
-
110
- return len(self.unique_topics)
111
-
112
- @staticmethod
113
- def create_column_name(topic):
114
- """
115
- Create a standardized column name from a topic string.
116
- """
117
- # Remove special characters and standardize
118
- topic_clean = str(topic).strip()
119
- # Remove brackets and special characters
120
- topic_clean = topic_clean.replace('[', '').replace(']', '').replace('(', '').replace(')', '')
121
- topic_clean = topic_clean.replace('**', '').replace('*', '')
122
- topic_clean = topic_clean.replace('.', '_').replace(' ', '_').replace('&', 'and')
123
- topic_clean = topic_clean.replace(':', '_').replace('-', '_').replace('/', '_')
124
- # Remove multiple underscores
125
- while '__' in topic_clean:
126
- topic_clean = topic_clean.replace('__', '_')
127
- return topic_clean.lower().strip('_')
128
-
129
- def set_selected_columns(self, selected_columns):
130
- """
131
- Set which original columns should be included in the output.
132
- """
133
- self.selected_columns = selected_columns if selected_columns else []
134
-
135
- def transform_data(self):
136
- """
137
- Transform the data into binary topic columns with sentiment values.
138
- """
139
- if not self.unique_topics:
140
- self.extract_unique_topics()
141
-
142
- # Create output dataframe starting with feedback_id
143
- self.transformed_data = pd.DataFrame({'feedback_id': range(1, len(self.data) + 1)})
144
-
145
- # Add selected original columns first (right after feedback_id)
146
- for col in self.selected_columns:
147
- if col in self.data.columns:
148
- self.transformed_data[col] = self.data[col]
149
-
150
- # Initialize all topic columns to 0
151
- for topic in sorted(self.unique_topics):
152
- topic_col = self.create_column_name(topic)
153
- self.transformed_data[topic_col] = 0
154
- self.transformed_data[f'{topic_col}_sentiment'] = None
155
-
156
- # Fill in the data from topic columns
157
- for idx, row in self.data.iterrows():
158
- # Process topic columns with sentiments
159
- for i, t_col in enumerate(self.topic_cols):
160
- topic = row.get(t_col)
161
-
162
- # Find corresponding sentiment column
163
- if i < len(self.sentiment_cols):
164
- sentiment = row.get(self.sentiment_cols[i])
165
- else:
166
- sentiment = None
167
-
168
- if pd.notna(topic) and isinstance(topic, str) and topic.strip():
169
- topic_col = self.create_column_name(topic)
170
- if topic_col in self.transformed_data.columns:
171
- self.transformed_data.loc[idx, topic_col] = 1
172
-
173
- # Convert sentiment to numeric value
174
- if pd.notna(sentiment) and isinstance(sentiment, str):
175
- sentiment_lower = sentiment.lower()
176
- if 'positive' in sentiment_lower:
177
- self.transformed_data.loc[idx, f'{topic_col}_sentiment'] = 1
178
- elif 'negative' in sentiment_lower:
179
- self.transformed_data.loc[idx, f'{topic_col}_sentiment'] = 0
180
- elif 'neutral' in sentiment_lower:
181
- self.transformed_data.loc[idx, f'{topic_col}_sentiment'] = 0.5
182
-
183
- # Process category columns (these typically don't have sentiments)
184
- for c_col in self.category_cols:
185
- category = row.get(c_col)
186
- if pd.notna(category) and isinstance(category, str) and category.strip():
187
- category_col = self.create_column_name(category)
188
- if category_col in self.transformed_data.columns:
189
- self.transformed_data.loc[idx, category_col] = 1
190
-
191
- # Note: We no longer automatically add text and recommendation columns here
192
- # as they should be selected through the column selection interface
193
-
194
- return self.transformed_data.shape
195
-
196
- def analyze_data(self):
197
- """
198
- Analyze the transformed data to provide insights.
199
- """
200
- if self.transformed_data is None:
201
- raise ValueError("No transformed data to analyze")
202
-
203
- # Identify topic columns (exclude feedback_id, selected original columns, and sentiment columns)
204
- excluded_cols = ['feedback_id'] + self.selected_columns
205
- topic_cols = [col for col in self.transformed_data.columns
206
- if col not in excluded_cols and not col.endswith('_sentiment')]
207
-
208
- # Count occurrences of each topic
209
- topic_counts = {}
210
- for topic in topic_cols:
211
- topic_counts[topic] = self.transformed_data[topic].sum()
212
-
213
- # Sort topics by frequency
214
- sorted_topics = sorted(topic_counts.items(), key=lambda x: x[1], reverse=True)
215
-
216
- # Prepare analysis summary
217
- analysis_text = f"**Analysis Results**\n\n"
218
- analysis_text += f"Total feedbacks: {len(self.transformed_data)}\n"
219
- analysis_text += f"Selected original columns: {len(self.selected_columns)}\n"
220
- analysis_text += f"Unique topics: {len(topic_cols)}\n\n"
221
-
222
- if self.selected_columns:
223
- analysis_text += f"**Included Original Columns:** {', '.join(self.selected_columns)}\n\n"
224
-
225
- analysis_text += "**Top 10 Most Frequent Topics:**\n"
226
- for topic, count in sorted_topics[:10]:
227
- analysis_text += f"- {topic}: {count} occurrences\n"
228
-
229
- # Calculate sentiment distributions for top topics
230
- analysis_text += "\n**Sentiment Distributions for Top 5 Topics:**\n"
231
- for topic, _ in sorted_topics[:5]:
232
- sentiment_col = f"{topic}_sentiment"
233
- if sentiment_col in self.transformed_data.columns:
234
- # Filter rows where the topic is present
235
- topic_rows = self.transformed_data[self.transformed_data[topic] == 1]
236
-
237
- positive = (topic_rows[sentiment_col] == 1.0).sum()
238
- negative = (topic_rows[sentiment_col] == 0.0).sum()
239
- neutral = (topic_rows[sentiment_col] == 0.5).sum()
240
-
241
- total = positive + negative + neutral
242
-
243
- if total > 0:
244
- analysis_text += f"\n{topic} ({total} occurrences):\n"
245
- analysis_text += f" - Positive: {positive} ({positive/total*100:.1f}%)\n"
246
- analysis_text += f" - Negative: {negative} ({negative/total*100:.1f}%)\n"
247
- analysis_text += f" - Neutral: {neutral} ({neutral/total*100:.1f}%)\n"
248
-
249
- # Calculate number of topics per feedback
250
- self.transformed_data['topic_count'] = self.transformed_data[topic_cols].sum(axis=1)
251
- avg_topics = self.transformed_data['topic_count'].mean()
252
- max_topics = self.transformed_data['topic_count'].max()
253
-
254
- analysis_text += f"\n**Topics per Feedback:**\n"
255
- analysis_text += f"- Average: {avg_topics:.2f}\n"
256
- analysis_text += f"- Maximum: {max_topics}\n"
257
-
258
- # Remove the temporary topic_count column
259
- self.transformed_data.drop('topic_count', axis=1, inplace=True)
260
-
261
- return analysis_text
262
-
263
- def save_transformed_data(self, output_format='xlsx'):
264
- """
265
- Save the transformed data and return the file path.
266
- Modified to use original filename as prefix.
267
- """
268
- if self.transformed_data is None:
269
- raise ValueError("No transformed data to save")
270
-
271
- # Create output directory if it doesn't exist
272
- output_dir = "outputs"
273
- os.makedirs(output_dir, exist_ok=True)
274
-
275
- # Create filename with original filename prefix and timestamp to avoid conflicts
276
- import datetime
277
- timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
278
-
279
- # Use original filename as prefix, or fallback to 'transformed_feedback' if not available
280
- prefix = self.original_filename if self.original_filename else 'transformed_feedback'
281
-
282
- if output_format == 'xlsx':
283
- filename = f"{prefix}_transformed_{timestamp}.xlsx"
284
- filepath = os.path.join(output_dir, filename)
285
- self.transformed_data.to_excel(filepath, index=False)
286
- else: # csv
287
- filename = f"{prefix}_transformed_{timestamp}.csv"
288
- filepath = os.path.join(output_dir, filename)
289
- self.transformed_data.to_csv(filepath, index=False)
290
-
291
- # Verify file was created and is readable
292
- if not os.path.exists(filepath):
293
- raise ValueError(f"Failed to create output file: {filepath}")
294
-
295
- return filepath
296
-
297
-
298
- # Gradio interface functions
299
- def get_column_selector(file_obj):
300
- """
301
- Get a combined column preview and selector interface.
302
- """
303
- try:
304
- if file_obj is None:
305
- return gr.CheckboxGroup(
306
- choices=[],
307
- value=[],
308
- label="📋 Select Columns to Include",
309
- info="Upload a file first to see available columns"
310
- )
311
-
312
- # Read first few rows to get column names
313
- file_name = file_obj if isinstance(file_obj, str) else (file_obj.name if hasattr(file_obj, 'name') else 'unknown')
314
- _, file_ext = os.path.splitext(file_name)
315
-
316
- if file_ext.lower() in ['.xlsx', '.xls']:
317
- df = pd.read_excel(file_obj, nrows=5)
318
- elif file_ext.lower() == '.csv':
319
- try:
320
- df = pd.read_csv(file_obj, nrows=5)
321
- except:
322
- df = pd.read_csv(file_obj, sep='\t', nrows=5)
323
- else:
324
- df = pd.read_csv(file_obj, sep='\t', nrows=5)
325
-
326
- columns = list(df.columns)
327
-
328
- # Create column display with indices for easier reference
329
- column_choices = [f"{i+1:2d}. {col}" for i, col in enumerate(columns)]
330
-
331
- # Return updated CheckboxGroup with numbered columns and individual rows
332
- return gr.CheckboxGroup(
333
- choices=column_choices,
334
- value=[], # No columns selected by default
335
- label=f"📋 Select Columns to Include ({len(columns)} available)",
336
- info="Choose which original columns to include in the transformed file (in addition to feedback_id). Columns are numbered for easy reference.",
337
- elem_classes=["column-selector"] # Add CSS class for styling
338
- )
339
-
340
- except Exception as e:
341
- return gr.CheckboxGroup(
342
- choices=[],
343
- value=[],
344
- label="📋 Select Columns to Include",
345
- info=f"Error reading file: {str(e)}"
346
- )
347
-
348
-
349
- def extract_column_names(selected_display_names):
350
- """
351
- Extract actual column names from the numbered display format.
352
- """
353
- if not selected_display_names:
354
- return []
355
-
356
- actual_names = []
357
- for display_name in selected_display_names:
358
- # Remove the number prefix (e.g., "1. Column Name" -> "Column Name")
359
- if '. ' in display_name:
360
- actual_name = display_name.split('. ', 1)[1]
361
- actual_names.append(actual_name)
362
- else:
363
- actual_names.append(display_name)
364
-
365
- return actual_names
366
-
367
-
368
- def process_file(file_obj, topic_prefix, sentiment_prefix, category_prefix,
369
- text_column, recommendation_column, output_format, analyze_data, selected_columns):
370
- """
371
- Main processing function for Gradio interface.
372
- """
373
- try:
374
- # Extract actual column names from display format
375
- actual_column_names = extract_column_names(selected_columns)
376
-
377
- # Initialize transformer
378
- transformer = FeedbackTransformer(
379
- topic_prefix=topic_prefix,
380
- sentiment_prefix=sentiment_prefix,
381
- category_prefix=category_prefix,
382
- text_column=text_column,
383
- recommendation_column=recommendation_column
384
- )
385
-
386
- # Load data
387
- rows, cols = transformer.load_data(file_obj)
388
- status_msg = f"✅ Loaded {rows} rows and {cols} columns\n"
389
-
390
- # Set selected columns for inclusion
391
- transformer.set_selected_columns(actual_column_names)
392
- status_msg += f"📋 Selected {len(actual_column_names)} original columns for inclusion\n"
393
- if actual_column_names:
394
- status_msg += f" Selected columns: {', '.join(actual_column_names)}\n"
395
-
396
- # Identify columns
397
- col_info = transformer.identify_columns()
398
- status_msg += f"\n📊 Found columns:\n"
399
- status_msg += f"- Topic columns: {len(col_info['topic_cols'])}\n"
400
- status_msg += f"- Sentiment columns: {len(col_info['sentiment_cols'])}\n"
401
- status_msg += f"- Category columns: {len(col_info['category_cols'])}\n"
402
-
403
- # Extract unique topics
404
- num_topics = transformer.extract_unique_topics()
405
- status_msg += f"\n🎯 Found {num_topics} unique topics\n"
406
-
407
- # Transform data
408
- shape = transformer.transform_data()
409
- status_msg += f"\n✨ Transformed data shape: {shape[0]} rows × {shape[1]} columns\n"
410
-
411
- # Analyze if requested
412
- analysis_result = ""
413
- if analyze_data:
414
- analysis_result = transformer.analyze_data()
415
-
416
- # Save transformed data
417
- output_file = transformer.save_transformed_data(output_format)
418
- status_msg += f"\n💾 File saved successfully: {os.path.basename(output_file)}\n"
419
-
420
- return status_msg, analysis_result, output_file
421
-
422
- except Exception as e:
423
- error_msg = f"❌ Error: {str(e)}\n\n{traceback.format_exc()}"
424
- return error_msg, "", None
425
-
426
-
427
- # Create Gradio interface
428
- with gr.Blocks(title="Feedback Topic & Sentiment Transformer", css="""
429
- .column-selector .form-check {
430
- display: block !important;
431
- margin-bottom: 8px !important;
432
- }
433
- .column-selector .form-check-input {
434
- margin-right: 8px !important;
435
- }
436
- """) as demo:
437
- gr.Markdown("""
438
- # 📊 Feedback Topic & Sentiment Transformer
439
-
440
- Transform feedback data with topic and sentiment columns into a binary matrix format.
441
- Each unique topic becomes a separate column with 0/1 values and associated sentiment scores.
442
-
443
- ### 📋 Instructions:
444
- 1. Upload your Excel, CSV, or tab-delimited text file
445
- 2. Select which original columns to include in the output
446
- 3. Configure column prefixes (or use defaults)
447
- 4. Click "Transform Data" to process
448
- 5. Download the transformed file
449
- """)
450
-
451
- with gr.Row():
452
- with gr.Column(scale=1):
453
- # File upload
454
- input_file = gr.File(
455
- label="Upload Input File",
456
- file_types=[".xlsx", ".xls", ".csv", ".txt"],
457
- type="filepath"
458
- )
459
-
460
- # Combined column selector (replaces both preview and checkboxes)
461
- gr.Markdown("### 📋 Column Selection")
462
- column_selector = gr.CheckboxGroup(
463
- choices=[],
464
- value=[],
465
- label="Select Columns to Include",
466
- info="Upload a file first to see available columns"
467
- )
468
-
469
- with gr.Column(scale=1):
470
- # Configuration parameters
471
- gr.Markdown("### ⚙️ Configuration")
472
-
473
- topic_prefix = gr.Textbox(
474
- label="Topic Column Prefix",
475
- value="[**WORKSHOP] SwissLife Taxonomy",
476
- info="Prefix to identify topic columns"
477
- )
478
-
479
- sentiment_prefix = gr.Textbox(
480
- label="Sentiment Column Prefix",
481
- value="ABSA:",
482
- info="Prefix to identify sentiment columns"
483
- )
484
-
485
- category_prefix = gr.Textbox(
486
- label="Category Column Prefix",
487
- value="Categories:",
488
- info="Prefix to identify category columns"
489
- )
490
-
491
- text_column = gr.Textbox(
492
- label="Text Column Name",
493
- value="TEXT",
494
- info="Column containing original feedback text (for reference only)"
495
- )
496
-
497
- recommendation_column = gr.Textbox(
498
- label="Recommendation Column Name",
499
- value="Q4_Weiterempfehlung",
500
- info="Column containing recommendation scores (for reference only)"
501
- )
502
-
503
- output_format = gr.Radio(
504
- label="Output Format",
505
- choices=["xlsx", "csv"],
506
- value="xlsx"
507
- )
508
-
509
- analyze_checkbox = gr.Checkbox(
510
- label="Analyze transformed data",
511
- value=True
512
- )
513
-
514
- # Transform button
515
- transform_btn = gr.Button("🔄 Transform Data", variant="primary", size="lg")
516
-
517
- # Output sections
518
- with gr.Row():
519
- with gr.Column():
520
- status_output = gr.Textbox(
521
- label="Processing Status",
522
- lines=10,
523
- interactive=False
524
- )
525
-
526
- with gr.Column():
527
- analysis_output = gr.Markdown(
528
- label="Data Analysis"
529
- )
530
-
531
- # Download section with clickable filename
532
- with gr.Row():
533
- with gr.Column():
534
- gr.Markdown("### 📥 Download Transformed File")
535
- output_file = gr.File(
536
- label="Click filename below to download",
537
- interactive=False,
538
- show_label=True,
539
- file_count="single",
540
- file_types=None
541
- )
542
-
543
- # Event handlers
544
- input_file.change(
545
- fn=get_column_selector,
546
- inputs=[input_file],
547
- outputs=[column_selector]
548
- )
549
-
550
- transform_btn.click(
551
- fn=process_file,
552
- inputs=[
553
- input_file,
554
- topic_prefix,
555
- sentiment_prefix,
556
- category_prefix,
557
- text_column,
558
- recommendation_column,
559
- output_format,
560
- analyze_checkbox,
561
- column_selector
562
- ],
563
- outputs=[status_output, analysis_output, output_file]
564
- )
565
-
566
- # Examples section
567
- gr.Markdown("""
568
- ### 📝 Example Column Formats:
569
- - **Topic columns**: `[**WORKSHOP] SwissLife Taxonomy(Kommentar) 1`, `[**WORKSHOP] SwissLife Taxonomy(Kommentar) 2`
570
- - **Category columns**: `Categories:Topic1`, `Categories:Topic2`
571
- - **Sentiment columns**: `ABSA:Sentiment1`, `ABSA:Sentiment2`
572
-
573
- ### 🎯 Output Format:
574
- - **feedback_id**: Unique identifier for each row
575
- - **Selected original columns**: Any columns you selected from the original file
576
- - **Topic columns**: Each unique topic becomes a column with values 0 (absent) or 1 (present)
577
- - **Sentiment columns**: Each topic has an associated `_sentiment` column with values:
578
- - 1.0 = Positive
579
- - 0.5 = Neutral
580
- - 0.0 = Negative
581
- - **Output filename**: `[original_filename]_transformed_[timestamp].[format]`
582
-
583
- ### 💡 Tips:
584
- - Use the numbered column list to easily identify and select columns
585
- - The text and recommendation column names in configuration are now for reference only
586
- - To include them in output, select them using the column checkboxes
587
- - Click on the filename in the download section to download the file
588
- """)
589
-
590
- # Launch the app
591
- if __name__ == "__main__":
592
- demo.launch()