Spaces:
Sleeping
Sleeping
File size: 62,497 Bytes
338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 19651ed 338117f 42fdecf 338117f 42fdecf 19651ed 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 19651ed 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 812a545 338117f 812a545 42fdecf 338117f 812a545 338117f 812a545 338117f 42fdecf 338117f 42fdecf 19651ed 42fdecf 19651ed 42fdecf 19651ed 338117f 9eaf386 338117f 42fdecf 9eaf386 338117f 42fdecf 338117f 19651ed 42fdecf 19651ed 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 42fdecf 338117f 812a545 338117f 42fdecf 19651ed 42fdecf 19651ed 42fdecf 19651ed 338117f b0a3482 bd3e2ea 19651ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 |
import gradio as gr
import pandas as pd
import numpy as np
import os
import traceback
from typing import Tuple, Dict, Any, Optional, List
import tempfile
import io
import datetime
import re
class FeedbackTransformer:
"""
A class to transform feedback data with delimited topic and sentiment columns
into binary columns with prefixes T_, S_, and C_.
"""
def __init__(self,
topic_prefix="TOPIC_",
sentiment_prefix="SENTIMENT_",
category_prefix="Categories:",
text_column="TEXT",
recommendation_column="Q4_Weiterempfehlung"):
"""
Initialize the FeedbackTransformer with column specifications.
"""
self.topic_prefix = topic_prefix
self.sentiment_prefix = sentiment_prefix
self.category_prefix = category_prefix
self.text_column = text_column
self.recommendation_column = recommendation_column
self.data = None
self.transformed_data = None
self.topic_cols = []
self.sentiment_cols = []
self.category_cols = []
self.unique_topics = set()
self.unique_categories = set()
self.unique_sentiments = set()
self.topic_sentiment_mapping = {} # Map topics to their sentiment values
self.file_name = None
self.original_filename = None
self.selected_columns = []
self.verbatim_column = None # Store the verbatim/text column
def load_data(self, file_obj):
"""
Load data from the uploaded file object.
"""
if file_obj is None:
raise ValueError("No file uploaded")
# Get file extension and store original filename
file_name = file_obj if isinstance(file_obj, str) else (file_obj.name if hasattr(file_obj, 'name') else 'unknown')
self.original_filename = os.path.splitext(os.path.basename(file_name))[0]
_, file_ext = os.path.splitext(file_name)
# Read the data based on file type
try:
if file_ext.lower() in ['.xlsx', '.xls']:
self.data = pd.read_excel(file_obj)
elif file_ext.lower() == '.csv':
# Try comma delimiter first
try:
self.data = pd.read_csv(file_obj, encoding='utf-8')
except:
# If comma fails, try tab delimiter
self.data = pd.read_csv(file_obj, sep='\t', encoding='utf-8')
else:
# Default to tab-delimited
self.data = pd.read_csv(file_obj, sep='\t', encoding='utf-8')
except Exception as e:
raise ValueError(f"Error reading file: {str(e)}")
return len(self.data), len(self.data.columns)
def identify_columns(self):
"""
Identify topic, category, and sentiment columns in the data.
"""
if self.data is None:
raise ValueError("Data not loaded")
# Extract columns based on prefixes
self.topic_cols = [col for col in self.data.columns if "Topic:" in col]
self.sentiment_cols = [col for col in self.data.columns if self.sentiment_prefix in col]
self.category_cols = [col for col in self.data.columns if col.startswith(self.category_prefix)]
# Try to identify verbatim/text column
text_candidates = [col for col in self.data.columns if any(keyword in col.lower() for keyword in ['text', 'verbatim', 'comment', 'feedback'])]
if text_candidates:
self.verbatim_column = text_candidates[0] # Use the first match
elif self.text_column in self.data.columns:
self.verbatim_column = self.text_column
# If no columns found with specified prefixes, return all columns for manual selection
all_cols = list(self.data.columns)
return {
'topic_cols': self.topic_cols,
'sentiment_cols': self.sentiment_cols,
'category_cols': self.category_cols,
'all_columns': all_cols,
'verbatim_column': self.verbatim_column
}
def extract_unique_topics_and_categories(self):
"""
Extract all unique topics, categories, and sentiments from the respective columns.
"""
self.unique_topics = set()
self.unique_categories = set()
self.unique_sentiments = set()
self.topic_sentiment_mapping = {}
# Extract from topic columns (delimited by |)
for col in self.topic_cols:
for value in self.data[col].dropna():
if isinstance(value, str) and value.strip():
# Split by | delimiter and clean each topic
topics = [topic.strip() for topic in value.split('|') if topic.strip()]
self.unique_topics.update(topics)
# Extract from category columns (delimited by |)
for col in self.category_cols:
for value in self.data[col].dropna():
if isinstance(value, str) and value.strip():
# Split by | delimiter and clean each category
categories = [cat.strip() for cat in value.split('|') if cat.strip()]
self.unique_categories.update(categories)
# Extract sentiments from sentiment columns and build topic-sentiment mapping
for col in self.sentiment_cols:
for idx, value in enumerate(self.data[col].dropna()):
if isinstance(value, str) and value.strip():
# Split by | delimiter to get individual topic::sentiment pairs
pairs = [pair.strip() for pair in value.split('|') if pair.strip() and '::' in pair]
for pair in pairs:
if '::' in pair:
topic_part, sentiment_part = pair.split('::', 1)
topic = topic_part.strip()
sentiment = sentiment_part.strip()
if topic and sentiment:
self.unique_topics.add(topic) # Add topic from sentiment data
self.unique_sentiments.add(sentiment)
# Store the mapping for later use
if idx not in self.topic_sentiment_mapping:
self.topic_sentiment_mapping[idx] = {}
self.topic_sentiment_mapping[idx][topic] = sentiment
return len(self.unique_topics), len(self.unique_categories), len(self.unique_sentiments)
def set_selected_columns(self, selected_columns):
"""
Set which original columns should be included in the output.
"""
self.selected_columns = selected_columns if selected_columns else []
def transform_data(self):
"""
Transform the data into binary columns with T_, S_, and C_ prefixes.
"""
if not self.unique_topics and not self.unique_categories:
self.extract_unique_topics_and_categories()
# Create output dataframe starting with feedback_id
self.transformed_data = pd.DataFrame({'feedback_id': range(1, len(self.data) + 1)})
# Add selected original columns first (right after feedback_id)
for col in self.selected_columns:
if col in self.data.columns:
self.transformed_data[col] = self.data[col]
# Add Verbatim sentiment columns
self.transformed_data['Verbatim_Positive'] = 0
self.transformed_data['Verbatim_Neutral'] = 0
self.transformed_data['Verbatim_Negative'] = 0
# Create binary topic columns with T_ prefix
for topic in sorted(self.unique_topics):
safe_topic_name = self._make_safe_column_name(topic)
col_name = f"T_{safe_topic_name}"
self.transformed_data[col_name] = 0
# Create sentiment columns with S_ prefix (one per topic, containing actual sentiment values)
for topic in sorted(self.unique_topics):
safe_topic_name = self._make_safe_column_name(topic)
col_name = f"S_{safe_topic_name}"
self.transformed_data[col_name] = "" # Initialize with empty strings
# Create binary category columns with C_ prefix
for category in sorted(self.unique_categories):
safe_category_name = self._make_safe_column_name(category)
col_name = f"C_{safe_category_name}"
self.transformed_data[col_name] = 0
# Fill in the data
for idx, row in self.data.iterrows():
# Process sentiment columns to determine which topics exist in ABSA column
topics_in_absa = set()
all_sentiments_in_row = set() # Track all sentiments for verbatim columns
for s_col in self.sentiment_cols:
sentiment_value = row.get(s_col)
if pd.notna(sentiment_value) and isinstance(sentiment_value, str) and sentiment_value.strip():
pairs = [pair.strip() for pair in sentiment_value.split('|') if pair.strip()]
for pair in pairs:
if '::' in pair:
topic_part, sentiment_part = pair.split('::', 1)
topic = topic_part.strip()
sentiment = sentiment_part.strip()
if topic and sentiment:
topics_in_absa.add(topic)
all_sentiments_in_row.add(sentiment.lower()) # Store in lowercase for matching
# Set the actual sentiment value (not 1/0)
safe_topic_name = self._make_safe_column_name(topic)
sentiment_col_name = f"S_{safe_topic_name}"
if sentiment_col_name in self.transformed_data.columns:
self.transformed_data.loc[idx, sentiment_col_name] = sentiment
# Set Verbatim sentiment columns based on sentiments found in ABSA
if any(sentiment in all_sentiments_in_row for sentiment in ['positive', 'positiv']):
self.transformed_data.loc[idx, 'Verbatim_Positive'] = 1
if any(sentiment in all_sentiments_in_row for sentiment in ['neutral']):
self.transformed_data.loc[idx, 'Verbatim_Neutral'] = 1
if any(sentiment in all_sentiments_in_row for sentiment in ['negative', 'negativ']):
self.transformed_data.loc[idx, 'Verbatim_Negative'] = 1
# Set T_ columns to 1 if topic exists in ABSA column, 0 otherwise
for topic in topics_in_absa:
safe_topic_name = self._make_safe_column_name(topic)
topic_col_name = f"T_{safe_topic_name}"
if topic_col_name in self.transformed_data.columns:
self.transformed_data.loc[idx, topic_col_name] = 1
# Process category columns
categories_in_row = set()
for c_col in self.category_cols:
category_value = row.get(c_col)
if pd.notna(category_value) and isinstance(category_value, str) and category_value.strip():
categories = [cat.strip() for cat in category_value.split('|') if cat.strip()]
categories_in_row.update(categories)
# Set category binary values (always 1 if present in category column)
for category in categories_in_row:
safe_category_name = self._make_safe_column_name(category)
category_col_name = f"C_{safe_category_name}"
if category_col_name in self.transformed_data.columns:
self.transformed_data.loc[idx, category_col_name] = 1
return self.transformed_data.shape
def _make_safe_column_name(self, name):
"""
Convert a name to a safe column name by removing/replacing problematic characters.
"""
# Replace spaces and special characters with underscores
safe_name = re.sub(r'[^\w]', '_', str(name))
# Remove multiple consecutive underscores
safe_name = re.sub(r'_+', '_', safe_name)
# Remove leading/trailing underscores
safe_name = safe_name.strip('_')
return safe_name
def analyze_data(self):
"""
Analyze the transformed data to provide insights.
"""
if self.transformed_data is None:
raise ValueError("No transformed data to analyze")
# Count different types of columns
topic_cols = [col for col in self.transformed_data.columns if col.startswith('T_')]
sentiment_cols = [col for col in self.transformed_data.columns if col.startswith('S_')]
category_cols = [col for col in self.transformed_data.columns if col.startswith('C_')]
verbatim_cols = ['Verbatim_Positive', 'Verbatim_Neutral', 'Verbatim_Negative']
# Calculate statistics
topic_stats = {}
for col in topic_cols:
topic_stats[col] = self.transformed_data[col].sum()
# For sentiment columns, count non-empty values
sentiment_stats = {}
for col in sentiment_cols:
sentiment_stats[col] = (self.transformed_data[col] != "").sum()
category_stats = {}
for col in category_cols:
category_stats[col] = self.transformed_data[col].sum()
# Verbatim sentiment statistics
verbatim_stats = {}
for col in verbatim_cols:
if col in self.transformed_data.columns:
verbatim_stats[col] = self.transformed_data[col].sum()
# Sort by frequency
sorted_topics = sorted(topic_stats.items(), key=lambda x: x[1], reverse=True)
sorted_sentiments = sorted(sentiment_stats.items(), key=lambda x: x[1], reverse=True)
sorted_categories = sorted(category_stats.items(), key=lambda x: x[1], reverse=True)
sorted_verbatim = sorted(verbatim_stats.items(), key=lambda x: x[1], reverse=True)
# Prepare analysis summary
analysis_text = f"**Analysis Results**\n\n"
analysis_text += f"Total feedbacks: {len(self.transformed_data)}\n"
analysis_text += f"Selected original columns: {len(self.selected_columns)}\n"
analysis_text += f"Verbatim sentiment columns: 3 (Positive, Neutral, Negative)\n"
analysis_text += f"Topic columns (T_): {len(topic_cols)}\n"
analysis_text += f"Sentiment columns (S_): {len(sentiment_cols)}\n"
analysis_text += f"Category columns (C_): {len(category_cols)}\n"
analysis_text += f"Verbatim column used: {self.verbatim_column}\n\n"
if self.selected_columns:
analysis_text += f"**Included Original Columns:** {', '.join(self.selected_columns)}\n\n"
# Verbatim sentiment analysis
if sorted_verbatim:
analysis_text += "**Verbatim Sentiment Distribution:**\n"
for verbatim_col, count in sorted_verbatim:
percentage = (count / len(self.transformed_data)) * 100
analysis_text += f"- {verbatim_col}: {count} occurrences ({percentage:.1f}%)\n"
# Topic analysis
if sorted_topics:
analysis_text += "\n**Top 10 Most Frequent Topics (T_):**\n"
for topic_col, count in sorted_topics[:10]:
analysis_text += f"- {topic_col}: {count} occurrences\n"
# Category analysis
if sorted_categories:
analysis_text += "\n**Top 10 Most Frequent Categories (C_):**\n"
for category_col, count in sorted_categories[:10]:
analysis_text += f"- {category_col}: {count} occurrences\n"
# Sentiment analysis
if sorted_sentiments:
analysis_text += "\n**Top 10 Most Frequent Sentiments (S_):**\n"
for sentiment_col, count in sorted_sentiments[:10]:
analysis_text += f"- {sentiment_col}: {count} sentiment values\n"
return analysis_text
def save_transformed_data(self, output_format='xlsx'):
"""
Save the transformed data and return the file path.
"""
if self.transformed_data is None:
raise ValueError("No transformed data to save")
# Create filename with original filename prefix and timestamp
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
prefix = self.original_filename if self.original_filename else 'transformed_feedback'
if output_format == 'xlsx':
filename = f"{prefix}_transformed_topics_{timestamp}.xlsx"
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
self.transformed_data.to_excel(temp_file.name, index=False)
temp_file.close()
final_path = os.path.join(tempfile.gettempdir(), filename)
if os.path.exists(final_path):
os.remove(final_path)
os.rename(temp_file.name, final_path)
else: # csv
filename = f"{prefix}_binary_matrix_{timestamp}.csv"
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
self.transformed_data.to_csv(temp_file.name, index=False)
temp_file.close()
final_path = os.path.join(tempfile.gettempdir(), filename)
if os.path.exists(final_path):
os.remove(final_path)
os.rename(temp_file.name, final_path)
if not os.path.exists(final_path):
raise ValueError(f"Failed to create output file: {final_path}")
return final_path
# Gradio interface functions
def get_column_selector(file_obj):
"""
Get a combined column preview and selector interface.
"""
try:
if file_obj is None:
return gr.CheckboxGroup(
choices=[],
value=[],
label="π Select Columns to Include",
info="Upload a file first to see available columns"
)
# Read first few rows to get column names
file_name = file_obj if isinstance(file_obj, str) else (file_obj.name if hasattr(file_obj, 'name') else 'unknown')
_, file_ext = os.path.splitext(file_name)
if file_ext.lower() in ['.xlsx', '.xls']:
df = pd.read_excel(file_obj, nrows=5)
elif file_ext.lower() == '.csv':
try:
df = pd.read_csv(file_obj, nrows=5)
except:
df = pd.read_csv(file_obj, sep='\t', nrows=5)
else:
df = pd.read_csv(file_obj, sep='\t', nrows=5)
columns = list(df.columns)
column_choices = [f"{i+1:2d}. {col}" for i, col in enumerate(columns)]
return gr.CheckboxGroup(
choices=column_choices,
value=[],
label=f"π Select Columns to Include ({len(columns)} available)",
info="Choose which original columns to include in the transformed file (in addition to feedback_id).",
elem_classes=["column-selector"]
)
except Exception as e:
return gr.CheckboxGroup(
choices=[],
value=[],
label="π Select Columns to Include",
info=f"Error reading file: {str(e)}"
)
def extract_column_names(selected_display_names):
"""
Extract actual column names from the numbered display format.
"""
if not selected_display_names:
return []
actual_names = []
for display_name in selected_display_names:
if '. ' in display_name:
actual_name = display_name.split('. ', 1)[1]
actual_names.append(actual_name)
else:
actual_names.append(display_name)
return actual_names
def process_file(file_obj, topic_prefix, sentiment_prefix, category_prefix,
text_column, recommendation_column, output_format, analyze_data, selected_columns):
"""
Main processing function for Gradio interface.
"""
try:
# Extract actual column names from display format
actual_column_names = extract_column_names(selected_columns)
# Initialize transformer
transformer = FeedbackTransformer(
topic_prefix=topic_prefix,
sentiment_prefix=sentiment_prefix,
category_prefix=category_prefix,
text_column=text_column,
recommendation_column=recommendation_column
)
# Load data
rows, cols = transformer.load_data(file_obj)
status_msg = f"β
Loaded {rows} rows and {cols} columns\n"
# Set selected columns for inclusion
transformer.set_selected_columns(actual_column_names)
status_msg += f"π Selected {len(actual_column_names)} original columns for inclusion\n"
if actual_column_names:
status_msg += f" Selected columns: {', '.join(actual_column_names)}\n"
# Identify columns
col_info = transformer.identify_columns()
status_msg += f"\nπ Found columns:\n"
status_msg += f"- Topic columns: {len(col_info['topic_cols'])}\n"
status_msg += f"- Sentiment columns: {len(col_info['sentiment_cols'])}\n"
status_msg += f"- Category columns: {len(col_info['category_cols'])}\n"
status_msg += f"- Verbatim column: {col_info['verbatim_column']}\n"
# Extract unique topics, categories, and sentiments
num_topics, num_categories, num_sentiments = transformer.extract_unique_topics_and_categories()
status_msg += f"\nπ― Found {num_topics} unique topics\n"
status_msg += f"π·οΈ Found {num_categories} unique categories\n"
status_msg += f"π Found {num_sentiments} unique sentiments\n"
# Transform data
shape = transformer.transform_data()
status_msg += f"\n⨠Transformed data shape: {shape[0]} rows à {shape[1]} columns\n"
status_msg += f"π Binary matrix created with T_, S_, C_ prefixes and Verbatim sentiment columns\n"
status_msg += f"π§ T_ columns: 1 if topic present in ABSA column, 0 otherwise\n"
status_msg += f"π§ S_ columns: contain actual sentiment values (not 1/0)\n"
status_msg += f"π§ C_ columns: 1 if category assigned, 0 otherwise\n"
status_msg += f"π§ Verbatim_Positive/Neutral/Negative: 1 if respective sentiment found in ABSA, 0 otherwise\n"
# Analyze if requested
analysis_result = ""
if analyze_data:
analysis_result = transformer.analyze_data()
# Save transformed data
output_file = transformer.save_transformed_data(output_format)
status_msg += f"\nπΎ File saved successfully: {os.path.basename(output_file)}\n"
#status_msg += f"π₯ File download should start automatically\n"
return status_msg, analysis_result, output_file
except Exception as e:
error_msg = f"β Error: {str(e)}\n\n{traceback.format_exc()}"
return error_msg, "", None
# Create Gradio interface
with gr.Blocks(title="Binary Matrix Feedback Transformer", css="""
.column-selector .form-check {
display: block !important;
margin-bottom: 8px !important;
}
.column-selector .form-check-input {
margin-right: 8px !important;
}
""") as demo:
gr.Markdown("""
# π Binary Matrix Feedback Transformer
Transform feedback data with delimited topic and sentiment columns into binary matrix format.
### π§ Processing Logic:
- **Verbatim_Positive/Neutral/Negative**: Set to 1 if respective sentiment is found in ABSA column, 0 otherwise
- **T_ Columns**: Set to 1 if topic is present in ABSA column, 0 otherwise
- **S_ Columns**: One column per topic (e.g., S_Allgemeine_Zufriedenheit) containing actual sentiment values
- **C_ Columns**: Set to 1 if category is assigned, 0 otherwise
### π Data Format Requirements:
- **Topics**: Delimited by `|` (pipe) in "Topics:" columns (optional)
- **Sentiments**: Format `Topic::Sentiment|Topic2::Sentiment2` in ABSA columns
- **Categories**: Delimited by `|` (pipe) in "Categories:" columns
### π Key Logic:
- **Verbatim_** columns detect overall sentiment presence regardless of topic
- **T_** columns based on ABSA column presence (topics that have sentiment data)
- **S_** columns contain actual sentiment values (not binary 1/0)
- No automatic column renaming for "Topic:" prefix
""")
with gr.Row():
with gr.Column(scale=1):
# File upload
gr.Markdown("### π 1. Source file upload")
input_file = gr.File(
label="Upload Input File",
file_types=[".xlsx", ".xls", ".csv", ".txt"],
type="filepath"
)
# Combined column selector
gr.Markdown("### π 2. Column Selection")
column_selector = gr.CheckboxGroup(
choices=[],
value=[],
label="Select Columns to Include",
info="Upload a file first to see available columns"
)
with gr.Column(scale=1):
# Configuration parameters
gr.Markdown("### βοΈ 3. Configuration")
topic_prefix = gr.Textbox(
label="Topic Column Identifier",
value="Topic:",
info="Text to identify topic columns (for reference only)"
)
sentiment_prefix = gr.Textbox(
label="Sentiment Column Prefix (ABSA)",
value="ABSA:",
info="Prefix to identify sentiment columns (format: Topic::Sentiment)"
)
category_prefix = gr.Textbox(
label="Category Column Prefix",
value="Categories:",
info="Prefix to identify category columns"
)
text_column = gr.Textbox(
label="Text/Verbatim Column Pattern",
value="TEXT",
info="Pattern to identify verbatim text column (for reference only)"
)
recommendation_column = gr.Textbox(
label="Recommendation Column Name",
value="Q4_Weiterempfehlung",
info="Column containing recommendation scores (for reference only)"
)
output_format = gr.Radio(
label="Output Format",
choices=["xlsx", "csv"],
value="xlsx"
)
analyze_checkbox = gr.Checkbox(
label="Analyze transformed data",
value=True
)
# Transform button
transform_btn = gr.Button("π 4. Transform to Binary Matrix & Download", variant="primary", size="lg")
# Output sections
with gr.Row():
with gr.Column():
status_output = gr.Textbox(
label="Processing Status",
lines=12,
interactive=False
)
with gr.Column():
analysis_output = gr.Markdown(
label="Data Analysis"
)
# Download section
with gr.Row():
with gr.Column():
gr.Markdown("### π₯ Download Status")
gr.Markdown("Please click on the link inside the output file size value to download the transformed file (the number value on the right hand side below). You may need to right click and select Save Link As (or something similar)")
output_file = gr.File(
label="Transformed Binary Matrix (Auto-Download)",
interactive=False,
visible=True
)
# Event handlers
input_file.change(
fn=get_column_selector,
inputs=[input_file],
outputs=[column_selector]
)
transform_btn.click(
fn=process_file,
inputs=[
input_file,
topic_prefix,
sentiment_prefix,
category_prefix,
text_column,
recommendation_column,
output_format,
analyze_checkbox,
column_selector
],
outputs=[status_output, analysis_output, output_file]
)
# Examples section
gr.Markdown("""
### π Example Transformations:
**Input Data:**
```
| feedback_id | ABSA: Sentiments | Categories: Issues |
| 1 | Service::Negative|Quality::Positive | Issues|Support |
```
**Output Binary Matrix:**
```
| feedback_id | Verbatim_Positive | Verbatim_Neutral | Verbatim_Negative | T_Service | T_Quality | S_Service | S_Quality | C_Issues | C_Support |
| 1 | 1 | 0 | 1 | 1 | 1 | Negative | Positive | 1 | 1 |
```
### π‘ Column Logic:
- **Verbatim_Positive**: 1 if any "Positive"/"Positiv" sentiment found in ABSA
- **Verbatim_Neutral**: 1 if any "Neutral" sentiment found in ABSA
- **Verbatim_Negative**: 1 if any "Negative"/"Negativ" sentiment found in ABSA
- **T_[topic_name]**: 1 if topic exists in ABSA column, 0 otherwise
- **S_[topic_name]**: Actual sentiment value for that topic (e.g., "Positive", "Negative")
- **C_[category_name]**: 1 if category is assigned, 0 otherwise
- Safe column names (special characters replaced with underscores)
### π Key Changes Made:
- **NEW**: Added Verbatim_Positive, Verbatim_Neutral, Verbatim_Negative columns
- These columns are set to 1 if the respective sentiment is found anywhere in the ABSA column
- Supports both English (Positive/Negative/Neutral) and German (Positiv/Negativ) sentiment detection
- Removed automatic "Topic:" column renaming logic
- T_ columns are now binary (1/0) based on topic existence in ABSA column
- Topics are extracted from ABSA sentiment data for T_ column creation
""")
# Launch the app
if __name__ == "__main__":
demo.launch(import gradio as gr
import pandas as pd
import numpy as np
import os
import traceback
from typing import Tuple, Dict, Any, Optional, List
import tempfile
import io
import datetime
import re
class FeedbackTransformer:
"""
A class to transform feedback data with delimited topic and sentiment columns
into binary columns with prefixes T_, S_, and C_.
"""
def __init__(self,
topic_prefix="TOPIC_",
sentiment_prefix="SENTIMENT_",
category_prefix="Categories:",
text_column="TEXT",
recommendation_column="Q4_Weiterempfehlung"):
"""
Initialize the FeedbackTransformer with column specifications.
"""
self.topic_prefix = topic_prefix
self.sentiment_prefix = sentiment_prefix
self.category_prefix = category_prefix
self.text_column = text_column
self.recommendation_column = recommendation_column
self.data = None
self.transformed_data = None
self.topic_cols = []
self.sentiment_cols = []
self.category_cols = []
self.unique_topics = set()
self.unique_categories = set()
self.unique_sentiments = set()
self.topic_sentiment_mapping = {} # Map topics to their sentiment values
self.file_name = None
self.original_filename = None
self.selected_columns = []
self.verbatim_column = None # Store the verbatim/text column
self.dynamic_topic_prefix = None # Store dynamically extracted topic prefix
def load_data(self, file_obj):
"""
Load data from the uploaded file object.
"""
if file_obj is None:
raise ValueError("No file uploaded")
# Get file extension and store original filename
file_name = file_obj if isinstance(file_obj, str) else (file_obj.name if hasattr(file_obj, 'name') else 'unknown')
self.original_filename = os.path.splitext(os.path.basename(file_name))[0]
_, file_ext = os.path.splitext(file_name)
# Read the data based on file type
try:
if file_ext.lower() in ['.xlsx', '.xls']:
self.data = pd.read_excel(file_obj)
elif file_ext.lower() == '.csv':
# Try comma delimiter first
try:
self.data = pd.read_csv(file_obj, encoding='utf-8')
except:
# If comma fails, try tab delimiter
self.data = pd.read_csv(file_obj, sep='\t', encoding='utf-8')
else:
# Default to tab-delimited
self.data = pd.read_csv(file_obj, sep='\t', encoding='utf-8')
except Exception as e:
raise ValueError(f"Error reading file: {str(e)}")
return len(self.data), len(self.data.columns)
def extract_topic_prefix_from_category(self):
"""
Extract the topic prefix from a column containing "Category:"
by finding text between "Category:" and "("
"""
# Look for columns containing "Category:"
category_pattern_cols = [col for col in self.data.columns if "Category:" in col]
if category_pattern_cols:
# Use the first matching column
category_col = category_pattern_cols[0]
# Try to extract from column name first
match = re.search(r'Category:\s*([^(]+)\s*\(', category_col)
if match:
extracted_prefix = match.group(1).strip() + ":"
self.dynamic_topic_prefix = extracted_prefix
return extracted_prefix
# If not found in column name, try to extract from column values
for value in self.data[category_col].dropna():
if isinstance(value, str):
match = re.search(r'Category:\s*([^(]+)\s*\(', value)
if match:
extracted_prefix = match.group(1).strip() + ":"
self.dynamic_topic_prefix = extracted_prefix
return extracted_prefix
# If no match found, return None
return None
def identify_columns(self):
"""
Identify topic, category, and sentiment columns in the data.
"""
if self.data is None:
raise ValueError("Data not loaded")
# First try to extract topic prefix dynamically
extracted_prefix = self.extract_topic_prefix_from_category()
# Use dynamic prefix if found, otherwise use the provided topic_prefix
topic_identifier = extracted_prefix if extracted_prefix else self.topic_prefix
# Log the prefix being used
print(f"Using topic prefix: '{topic_identifier}'")
# Extract columns based on prefixes
# For topic columns, use the dynamic or provided prefix
if topic_identifier:
self.topic_cols = [col for col in self.data.columns if topic_identifier in col]
else:
self.topic_cols = [col for col in self.data.columns if "Topic:" in col]
self.sentiment_cols = [col for col in self.data.columns if self.sentiment_prefix in col]
self.category_cols = [col for col in self.data.columns if col.startswith(self.category_prefix)]
# Try to identify verbatim/text column
text_candidates = [col for col in self.data.columns if any(keyword in col.lower() for keyword in ['text', 'verbatim', 'comment', 'feedback'])]
if text_candidates:
self.verbatim_column = text_candidates[0] # Use the first match
elif self.text_column in self.data.columns:
self.verbatim_column = self.text_column
# If no columns found with specified prefixes, return all columns for manual selection
all_cols = list(self.data.columns)
return {
'topic_cols': self.topic_cols,
'sentiment_cols': self.sentiment_cols,
'category_cols': self.category_cols,
'all_columns': all_cols,
'verbatim_column': self.verbatim_column,
'dynamic_topic_prefix': self.dynamic_topic_prefix
}
def extract_unique_topics_and_categories(self):
"""
Extract all unique topics, categories, and sentiments from the respective columns.
"""
self.unique_topics = set()
self.unique_categories = set()
self.unique_sentiments = set()
self.topic_sentiment_mapping = {}
# Extract from topic columns (delimited by |)
for col in self.topic_cols:
for value in self.data[col].dropna():
if isinstance(value, str) and value.strip():
# Split by | delimiter and clean each topic
topics = [topic.strip() for topic in value.split('|') if topic.strip()]
self.unique_topics.update(topics)
# Extract from category columns (delimited by |)
for col in self.category_cols:
for value in self.data[col].dropna():
if isinstance(value, str) and value.strip():
# Split by | delimiter and clean each category
categories = [cat.strip() for cat in value.split('|') if cat.strip()]
self.unique_categories.update(categories)
# Extract sentiments from sentiment columns and build topic-sentiment mapping
for col in self.sentiment_cols:
for idx, value in enumerate(self.data[col].dropna()):
if isinstance(value, str) and value.strip():
# Split by | delimiter to get individual topic::sentiment pairs
pairs = [pair.strip() for pair in value.split('|') if pair.strip() and '::' in pair]
for pair in pairs:
if '::' in pair:
topic_part, sentiment_part = pair.split('::', 1)
topic = topic_part.strip()
sentiment = sentiment_part.strip()
if topic and sentiment:
self.unique_topics.add(topic) # Add topic from sentiment data
self.unique_sentiments.add(sentiment)
# Store the mapping for later use
if idx not in self.topic_sentiment_mapping:
self.topic_sentiment_mapping[idx] = {}
self.topic_sentiment_mapping[idx][topic] = sentiment
return len(self.unique_topics), len(self.unique_categories), len(self.unique_sentiments)
def set_selected_columns(self, selected_columns):
"""
Set which original columns should be included in the output.
"""
self.selected_columns = selected_columns if selected_columns else []
def transform_data(self):
"""
Transform the data into binary columns with T_, S_, and C_ prefixes.
"""
if not self.unique_topics and not self.unique_categories:
self.extract_unique_topics_and_categories()
# Create output dataframe starting with feedback_id
self.transformed_data = pd.DataFrame({'feedback_id': range(1, len(self.data) + 1)})
# Add selected original columns first (right after feedback_id)
for col in self.selected_columns:
if col in self.data.columns:
self.transformed_data[col] = self.data[col]
# Add Verbatim sentiment columns
self.transformed_data['Verbatim_Positive'] = 0
self.transformed_data['Verbatim_Neutral'] = 0
self.transformed_data['Verbatim_Negative'] = 0
# Create binary topic columns with T_ prefix
for topic in sorted(self.unique_topics):
safe_topic_name = self._make_safe_column_name(topic)
col_name = f"T_{safe_topic_name}"
self.transformed_data[col_name] = 0
# Create sentiment columns with S_ prefix (one per topic, containing actual sentiment values)
for topic in sorted(self.unique_topics):
safe_topic_name = self._make_safe_column_name(topic)
col_name = f"S_{safe_topic_name}"
self.transformed_data[col_name] = "" # Initialize with empty strings
# Create binary category columns with C_ prefix
for category in sorted(self.unique_categories):
safe_category_name = self._make_safe_column_name(category)
col_name = f"C_{safe_category_name}"
self.transformed_data[col_name] = 0
# Fill in the data
for idx, row in self.data.iterrows():
# Process sentiment columns to determine which topics exist in ABSA column
topics_in_absa = set()
all_sentiments_in_row = set() # Track all sentiments for verbatim columns
for s_col in self.sentiment_cols:
sentiment_value = row.get(s_col)
if pd.notna(sentiment_value) and isinstance(sentiment_value, str) and sentiment_value.strip():
pairs = [pair.strip() for pair in sentiment_value.split('|') if pair.strip()]
for pair in pairs:
if '::' in pair:
topic_part, sentiment_part = pair.split('::', 1)
topic = topic_part.strip()
sentiment = sentiment_part.strip()
if topic and sentiment:
topics_in_absa.add(topic)
all_sentiments_in_row.add(sentiment.lower()) # Store in lowercase for matching
# Set the actual sentiment value (not 1/0)
safe_topic_name = self._make_safe_column_name(topic)
sentiment_col_name = f"S_{safe_topic_name}"
if sentiment_col_name in self.transformed_data.columns:
self.transformed_data.loc[idx, sentiment_col_name] = sentiment
# Set Verbatim sentiment columns based on sentiments found in ABSA
if any(sentiment in all_sentiments_in_row for sentiment in ['positive', 'positiv']):
self.transformed_data.loc[idx, 'Verbatim_Positive'] = 1
if any(sentiment in all_sentiments_in_row for sentiment in ['neutral']):
self.transformed_data.loc[idx, 'Verbatim_Neutral'] = 1
if any(sentiment in all_sentiments_in_row for sentiment in ['negative', 'negativ']):
self.transformed_data.loc[idx, 'Verbatim_Negative'] = 1
# Set T_ columns to 1 if topic exists in ABSA column, 0 otherwise
for topic in topics_in_absa:
safe_topic_name = self._make_safe_column_name(topic)
topic_col_name = f"T_{safe_topic_name}"
if topic_col_name in self.transformed_data.columns:
self.transformed_data.loc[idx, topic_col_name] = 1
# Process category columns
categories_in_row = set()
for c_col in self.category_cols:
category_value = row.get(c_col)
if pd.notna(category_value) and isinstance(category_value, str) and category_value.strip():
categories = [cat.strip() for cat in category_value.split('|') if cat.strip()]
categories_in_row.update(categories)
# Set category binary values (always 1 if present in category column)
for category in categories_in_row:
safe_category_name = self._make_safe_column_name(category)
category_col_name = f"C_{safe_category_name}"
if category_col_name in self.transformed_data.columns:
self.transformed_data.loc[idx, category_col_name] = 1
return self.transformed_data.shape
def _make_safe_column_name(self, name):
"""
Convert a name to a safe column name by removing/replacing problematic characters.
"""
# Replace spaces and special characters with underscores
safe_name = re.sub(r'[^\w]', '_', str(name))
# Remove multiple consecutive underscores
safe_name = re.sub(r'_+', '_', safe_name)
# Remove leading/trailing underscores
safe_name = safe_name.strip('_')
return safe_name
def analyze_data(self):
"""
Analyze the transformed data to provide insights.
"""
if self.transformed_data is None:
raise ValueError("No transformed data to analyze")
# Count different types of columns
topic_cols = [col for col in self.transformed_data.columns if col.startswith('T_')]
sentiment_cols = [col for col in self.transformed_data.columns if col.startswith('S_')]
category_cols = [col for col in self.transformed_data.columns if col.startswith('C_')]
verbatim_cols = ['Verbatim_Positive', 'Verbatim_Neutral', 'Verbatim_Negative']
# Calculate statistics
topic_stats = {}
for col in topic_cols:
topic_stats[col] = self.transformed_data[col].sum()
# For sentiment columns, count non-empty values
sentiment_stats = {}
for col in sentiment_cols:
sentiment_stats[col] = (self.transformed_data[col] != "").sum()
category_stats = {}
for col in category_cols:
category_stats[col] = self.transformed_data[col].sum()
# Verbatim sentiment statistics
verbatim_stats = {}
for col in verbatim_cols:
if col in self.transformed_data.columns:
verbatim_stats[col] = self.transformed_data[col].sum()
# Sort by frequency
sorted_topics = sorted(topic_stats.items(), key=lambda x: x[1], reverse=True)
sorted_sentiments = sorted(sentiment_stats.items(), key=lambda x: x[1], reverse=True)
sorted_categories = sorted(category_stats.items(), key=lambda x: x[1], reverse=True)
sorted_verbatim = sorted(verbatim_stats.items(), key=lambda x: x[1], reverse=True)
# Prepare analysis summary
analysis_text = f"**Analysis Results**\n\n"
analysis_text += f"Total feedbacks: {len(self.transformed_data)}\n"
analysis_text += f"Selected original columns: {len(self.selected_columns)}\n"
analysis_text += f"Verbatim sentiment columns: 3 (Positive, Neutral, Negative)\n"
analysis_text += f"Topic columns (T_): {len(topic_cols)}\n"
analysis_text += f"Sentiment columns (S_): {len(sentiment_cols)}\n"
analysis_text += f"Category columns (C_): {len(category_cols)}\n"
analysis_text += f"Verbatim column used: {self.verbatim_column}\n"
# Add dynamic topic prefix info
if self.dynamic_topic_prefix:
analysis_text += f"Dynamic topic prefix extracted: '{self.dynamic_topic_prefix}'\n\n"
else:
analysis_text += f"Topic prefix used: '{self.topic_prefix}'\n\n"
if self.selected_columns:
analysis_text += f"**Included Original Columns:** {', '.join(self.selected_columns)}\n\n"
# Verbatim sentiment analysis
if sorted_verbatim:
analysis_text += "**Verbatim Sentiment Distribution:**\n"
for verbatim_col, count in sorted_verbatim:
percentage = (count / len(self.transformed_data)) * 100
analysis_text += f"- {verbatim_col}: {count} occurrences ({percentage:.1f}%)\n"
# Topic analysis
if sorted_topics:
analysis_text += "\n**Top 10 Most Frequent Topics (T_):**\n"
for topic_col, count in sorted_topics[:10]:
analysis_text += f"- {topic_col}: {count} occurrences\n"
# Category analysis
if sorted_categories:
analysis_text += "\n**Top 10 Most Frequent Categories (C_):**\n"
for category_col, count in sorted_categories[:10]:
analysis_text += f"- {category_col}: {count} occurrences\n"
# Sentiment analysis
if sorted_sentiments:
analysis_text += "\n**Top 10 Most Frequent Sentiments (S_):**\n"
for sentiment_col, count in sorted_sentiments[:10]:
analysis_text += f"- {sentiment_col}: {count} sentiment values\n"
return analysis_text
def save_transformed_data(self, output_format='xlsx'):
"""
Save the transformed data and return the file path.
"""
if self.transformed_data is None:
raise ValueError("No transformed data to save")
# Create filename with original filename prefix and timestamp
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
prefix = self.original_filename if self.original_filename else 'transformed_feedback'
if output_format == 'xlsx':
filename = f"{prefix}_transformed_topics_{timestamp}.xlsx"
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
self.transformed_data.to_excel(temp_file.name, index=False)
temp_file.close()
final_path = os.path.join(tempfile.gettempdir(), filename)
if os.path.exists(final_path):
os.remove(final_path)
os.rename(temp_file.name, final_path)
else: # csv
filename = f"{prefix}_binary_matrix_{timestamp}.csv"
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
self.transformed_data.to_csv(temp_file.name, index=False)
temp_file.close()
final_path = os.path.join(tempfile.gettempdir(), filename)
if os.path.exists(final_path):
os.remove(final_path)
os.rename(temp_file.name, final_path)
if not os.path.exists(final_path):
raise ValueError(f"Failed to create output file: {final_path}")
return final_path
# Gradio interface functions
def get_column_selector(file_obj):
"""
Get a combined column preview and selector interface.
"""
try:
if file_obj is None:
return gr.CheckboxGroup(
choices=[],
value=[],
label="π Select Columns to Include",
info="Upload a file first to see available columns"
)
# Read first few rows to get column names
file_name = file_obj if isinstance(file_obj, str) else (file_obj.name if hasattr(file_obj, 'name') else 'unknown')
_, file_ext = os.path.splitext(file_name)
if file_ext.lower() in ['.xlsx', '.xls']:
df = pd.read_excel(file_obj, nrows=5)
elif file_ext.lower() == '.csv':
try:
df = pd.read_csv(file_obj, nrows=5)
except:
df = pd.read_csv(file_obj, sep='\t', nrows=5)
else:
df = pd.read_csv(file_obj, sep='\t', nrows=5)
columns = list(df.columns)
column_choices = [f"{i+1:2d}. {col}" for i, col in enumerate(columns)]
return gr.CheckboxGroup(
choices=column_choices,
value=[],
label=f"π Select Columns to Include ({len(columns)} available)",
info="Choose which original columns to include in the transformed file (in addition to feedback_id).",
elem_classes=["column-selector"]
)
except Exception as e:
return gr.CheckboxGroup(
choices=[],
value=[],
label="π Select Columns to Include",
info=f"Error reading file: {str(e)}"
)
def extract_column_names(selected_display_names):
"""
Extract actual column names from the numbered display format.
"""
if not selected_display_names:
return []
actual_names = []
for display_name in selected_display_names:
if '. ' in display_name:
actual_name = display_name.split('. ', 1)[1]
actual_names.append(actual_name)
else:
actual_names.append(display_name)
return actual_names
def process_file(file_obj, topic_prefix, sentiment_prefix, category_prefix,
text_column, recommendation_column, output_format, analyze_data, selected_columns):
"""
Main processing function for Gradio interface.
"""
try:
# Extract actual column names from display format
actual_column_names = extract_column_names(selected_columns)
# Initialize transformer
transformer = FeedbackTransformer(
topic_prefix=topic_prefix,
sentiment_prefix=sentiment_prefix,
category_prefix=category_prefix,
text_column=text_column,
recommendation_column=recommendation_column
)
# Load data
rows, cols = transformer.load_data(file_obj)
status_msg = f"β
Loaded {rows} rows and {cols} columns\n"
# Set selected columns for inclusion
transformer.set_selected_columns(actual_column_names)
status_msg += f"π Selected {len(actual_column_names)} original columns for inclusion\n"
if actual_column_names:
status_msg += f" Selected columns: {', '.join(actual_column_names)}\n"
# Identify columns
col_info = transformer.identify_columns()
status_msg += f"\nπ Found columns:\n"
status_msg += f"- Topic columns: {len(col_info['topic_cols'])}\n"
status_msg += f"- Sentiment columns: {len(col_info['sentiment_cols'])}\n"
status_msg += f"- Category columns: {len(col_info['category_cols'])}\n"
status_msg += f"- Verbatim column: {col_info['verbatim_column']}\n"
# Add dynamic topic prefix info
if col_info.get('dynamic_topic_prefix'):
status_msg += f"- Dynamic topic prefix extracted: '{col_info['dynamic_topic_prefix']}'\n"
# Extract unique topics, categories, and sentiments
num_topics, num_categories, num_sentiments = transformer.extract_unique_topics_and_categories()
status_msg += f"\nπ― Found {num_topics} unique topics\n"
status_msg += f"π·οΈ Found {num_categories} unique categories\n"
status_msg += f"π Found {num_sentiments} unique sentiments\n"
# Transform data
shape = transformer.transform_data()
status_msg += f"\n⨠Transformed data shape: {shape[0]} rows à {shape[1]} columns\n"
status_msg += f"π Binary matrix created with T_, S_, C_ prefixes and Verbatim sentiment columns\n"
status_msg += f"π§ T_ columns: 1 if topic present in ABSA column, 0 otherwise\n"
status_msg += f"π§ S_ columns: contain actual sentiment values (not 1/0)\n"
status_msg += f"π§ C_ columns: 1 if category assigned, 0 otherwise\n"
status_msg += f"π§ Verbatim_Positive/Neutral/Negative: 1 if respective sentiment found in ABSA, 0 otherwise\n"
# Analyze if requested
analysis_result = ""
if analyze_data:
analysis_result = transformer.analyze_data()
# Save transformed data
output_file = transformer.save_transformed_data(output_format)
status_msg += f"\nπΎ File saved successfully: {os.path.basename(output_file)}\n"
#status_msg += f"π₯ File download should start automatically\n"
return status_msg, analysis_result, output_file
except Exception as e:
error_msg = f"β Error: {str(e)}\n\n{traceback.format_exc()}"
return error_msg, "", None
# Create Gradio interface
with gr.Blocks(title="Binary Matrix Feedback Transformer", css="""
.column-selector .form-check {
display: block !important;
margin-bottom: 8px !important;
}
.column-selector .form-check-input {
margin-right: 8px !important;
}
""") as demo:
gr.Markdown("""
# π Binary Matrix Feedback Transformer
Transform feedback data with delimited topic and sentiment columns into binary matrix format.
### π§ Processing Logic:
- **Automatic Topic Prefix Detection**: Extracts topic prefix from columns containing "Category:" by finding text between "Category:" and "("
- **Verbatim_Positive/Neutral/Negative**: Set to 1 if respective sentiment is found in ABSA column, 0 otherwise
- **T_ Columns**: Set to 1 if topic is present in ABSA column, 0 otherwise
- **S_ Columns**: One column per topic (e.g., S_Allgemeine_Zufriedenheit) containing actual sentiment values
- **C_ Columns**: Set to 1 if category is assigned, 0 otherwise
### π Data Format Requirements:
- **Topics**: Delimited by `|` (pipe) in columns identified by dynamic or manual prefix
- **Sentiments**: Format `Topic::Sentiment|Topic2::Sentiment2` in ABSA columns
- **Categories**: Delimited by `|` (pipe) in "Categories:" columns
### π Key Features:
- **Dynamic Topic Prefix Extraction**: Automatically extracts topic prefix from "Category:" columns
- **Verbatim_** columns detect overall sentiment presence regardless of topic
- **T_** columns based on ABSA column presence (topics that have sentiment data)
- **S_** columns contain actual sentiment values (not binary 1/0)
""")
with gr.Row():
with gr.Column(scale=1):
# File upload
gr.Markdown("### π 1. Source file upload")
input_file = gr.File(
label="Upload Input File",
file_types=[".xlsx", ".xls", ".csv", ".txt"],
type="filepath"
)
# Combined column selector
gr.Markdown("### π 2. Column Selection")
column_selector = gr.CheckboxGroup(
choices=[],
value=[],
label="Select Columns to Include",
info="Upload a file first to see available columns"
)
with gr.Column(scale=1):
# Configuration parameters
gr.Markdown("### βοΈ 3. Configuration")
topic_prefix = gr.Textbox(
label="Topic Column Identifier (Fallback)",
value="Topic:",
info="Fallback identifier if dynamic extraction from Category: column fails"
)
sentiment_prefix = gr.Textbox(
label="Sentiment Column Prefix (ABSA)",
value="ABSA:",
info="Prefix to identify sentiment columns (format: Topic::Sentiment)"
)
category_prefix = gr.Textbox(
label="Category Column Prefix",
value="Categories:",
info="Prefix to identify category columns"
)
text_column = gr.Textbox(
label="Text/Verbatim Column Pattern",
value="TEXT",
info="Pattern to identify verbatim text column (for reference only)"
)
recommendation_column = gr.Textbox(
label="Recommendation Column Name",
value="Q4_Weiterempfehlung",
info="Column containing recommendation scores (for reference only)"
)
output_format = gr.Radio(
label="Output Format",
choices=["xlsx", "csv"],
value="xlsx"
)
analyze_checkbox = gr.Checkbox(
label="Analyze transformed data",
value=True
)
# Transform button
transform_btn = gr.Button("π 4. Transform to Binary Matrix & Download", variant="primary", size="lg")
# Output sections
with gr.Row():
with gr.Column():
status_output = gr.Textbox(
label="Processing Status",
lines=12,
interactive=False
)
with gr.Column():
analysis_output = gr.Markdown(
label="Data Analysis"
)
# Download section
with gr.Row():
with gr.Column():
gr.Markdown("### π₯ Download Status")
gr.Markdown("Please click on the link inside the output file size value to download the transformed file (the number value on the right hand side below). You may need to right click and select Save Link As (or something similar)")
output_file = gr.File(
label="Transformed Binary Matrix (Auto-Download)",
interactive=False,
visible=True
)
# Event handlers
input_file.change(
fn=get_column_selector,
inputs=[input_file],
outputs=[column_selector]
)
transform_btn.click(
fn=process_file,
inputs=[
input_file,
topic_prefix,
sentiment_prefix,
category_prefix,
text_column,
recommendation_column,
output_format,
analyze_checkbox,
column_selector
],
outputs=[status_output, analysis_output, output_file]
)
# Examples section
gr.Markdown("""
### π Example Transformations:
**Input Data with Dynamic Topic Extraction:**
```
| Column: "Category: Service (ABC)" | ABSA: Sentiments | Categories: Issues |
| 1 | Service::Negative|Quality::Positive | Issues|Support |
```
**System will:**
1. Extract "Service:" from "Category: Service (ABC)" column
2. Use "Service:" to identify topic columns instead of "Topic:"
**Output Binary Matrix:**
```
| feedback_id | Verbatim_Positive | Verbatim_Neutral | Verbatim_Negative | T_Service | T_Quality | S_Service | S_Quality | C_Issues | C_Support |
| 1 | 1 | 0 | 1 | 1 | 1 | Negative | Positive | 1 | 1 |
```
### π‘ Dynamic Topic Prefix Logic:
- Searches for columns containing "Category:"
- Extracts text between "Category:" and "(" (e.g., "Service" from "Category: Service (ABC)")
- Adds ":" to create the topic prefix (e.g., "Service:")
- Uses this prefix to identify topic columns
- Falls back to manual "Topic Column Identifier" if extraction fails
### π Key Changes in This Version:
- **NEW**: Automatic extraction of topic prefix from Category columns
- Dynamically identifies topic columns based on extracted prefix
- Maintains all other functionality (Verbatim columns, T_, S_, C_ logic)
- Provides fallback to manual topic prefix if extraction fails
""")
# Launch the app
if __name__ == "__main__":
demo.launch()
|