File size: 23,650 Bytes
338117f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812a545
338117f
812a545
338117f
812a545
338117f
 
 
812a545
338117f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812a545
338117f
 
 
 
 
9eaf386
338117f
 
 
 
 
 
 
9eaf386
338117f
 
 
 
 
 
 
 
 
9eaf386
338117f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eaf386
338117f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812a545
338117f
 
9eaf386
338117f
812a545
338117f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812a545
338117f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812a545
338117f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import gradio as gr
import pandas as pd
import numpy as np
import os
import traceback
from typing import Tuple, Dict, Any, Optional
import tempfile
import io
import datetime

class FeedbackTransformer:
    """
    A class to transform feedback data with topic and sentiment columns
    into a binary format where each topic is a separate column.
    """

    def __init__(self,
                 topic_prefix="TOPIC_",
                 sentiment_prefix="SENTIMENT_",
                 category_prefix="Categories:",
                 text_column="TEXT",
                 recommendation_column="Q4_Weiterempfehlung"):
        """
        Initialize the FeedbackTransformer with column specifications.
        """
        self.topic_prefix = topic_prefix
        self.sentiment_prefix = sentiment_prefix
        self.category_prefix = category_prefix
        self.text_column = text_column
        self.recommendation_column = recommendation_column
        self.data = None
        self.transformed_data = None
        self.topic_cols = []
        self.sentiment_cols = []
        self.category_cols = []
        self.unique_topics = set()
        self.file_name = None
        self.original_filename = None
        self.selected_columns = []  # Store columns selected for inclusion

    def load_data(self, file_obj):
        """
        Load data from the uploaded file object.
        """
        if file_obj is None:
            raise ValueError("No file uploaded")

        # Get file extension and store original filename
        file_name = file_obj if isinstance(file_obj, str) else (file_obj.name if hasattr(file_obj, 'name') else 'unknown')
        self.original_filename = os.path.splitext(os.path.basename(file_name))[0]
        _, file_ext = os.path.splitext(file_name)

        # Read the data based on file type
        try:
            if file_ext.lower() in ['.xlsx', '.xls']:
                self.data = pd.read_excel(file_obj)
            elif file_ext.lower() == '.csv':
                # Try comma delimiter first
                try:
                    self.data = pd.read_csv(file_obj, encoding='utf-8')
                except:
                    # If comma fails, try tab delimiter
                    self.data = pd.read_csv(file_obj, sep='\t', encoding='utf-8')
            else:
                # Default to tab-delimited
                self.data = pd.read_csv(file_obj, sep='\t', encoding='utf-8')
        except Exception as e:
            raise ValueError(f"Error reading file: {str(e)}")

        return len(self.data), len(self.data.columns)

    def identify_columns(self):
        """
        Identify topic, category, and sentiment columns in the data.
        """
        if self.data is None:
            raise ValueError("Data not loaded")

        # Extract columns based on prefixes
        self.topic_cols = [col for col in self.data.columns if self.topic_prefix in col]
        self.sentiment_cols = [col for col in self.data.columns if self.sentiment_prefix in col]
        self.category_cols = [col for col in self.data.columns if col.startswith(self.category_prefix)]

        # If no columns found with specified prefixes, return all columns for manual selection
        all_cols = list(self.data.columns)

        return {
            'topic_cols': self.topic_cols,
            'sentiment_cols': self.sentiment_cols,
            'category_cols': self.category_cols,
            'all_columns': all_cols
        }

    def extract_unique_topics(self):
        """
        Extract all unique topics from the topic columns.
        """
        self.unique_topics = set()

        # Extract from topic columns
        for col in self.topic_cols:
            self.unique_topics.update(self.data[col].dropna().unique())

        # Also extract from category columns if they exist
        for col in self.category_cols:
            self.unique_topics.update(self.data[col].dropna().unique())

        # Remove empty topics
        self.unique_topics = {t for t in self.unique_topics if isinstance(t, str) and t.strip()}

        return len(self.unique_topics)

    @staticmethod
    def create_column_name(topic):
        """
        Create a standardized column name from a topic string.
        """
        # Remove special characters and standardize
        topic_clean = str(topic).strip()
        # Remove brackets and special characters
        topic_clean = topic_clean.replace('[', '').replace(']', '').replace('(', '').replace(')', '')
        topic_clean = topic_clean.replace('**', '').replace('*', '')
        topic_clean = topic_clean.replace('.', '_').replace(' ', '_').replace('&', 'and')
        topic_clean = topic_clean.replace(':', '_').replace('-', '_').replace('/', '_')
        # Remove multiple underscores
        while '__' in topic_clean:
            topic_clean = topic_clean.replace('__', '_')
        return topic_clean.lower().strip('_')

    def set_selected_columns(self, selected_columns):
        """
        Set which original columns should be included in the output.
        """
        self.selected_columns = selected_columns if selected_columns else []

    def transform_data(self):
        """
        Transform the data into binary topic columns with sentiment values.
        """
        if not self.unique_topics:
            self.extract_unique_topics()

        # Create output dataframe starting with feedback_id
        self.transformed_data = pd.DataFrame({'feedback_id': range(1, len(self.data) + 1)})

        # Add selected original columns first (right after feedback_id)
        for col in self.selected_columns:
            if col in self.data.columns:
                self.transformed_data[col] = self.data[col]

        # Initialize all topic columns to 0
        for topic in sorted(self.unique_topics):
            topic_col = self.create_column_name(topic)
            self.transformed_data[topic_col] = 0
            self.transformed_data[f'{topic_col}_sentiment'] = None

        # Fill in the data from topic columns
        for idx, row in self.data.iterrows():
            # Process topic columns with sentiments
            for i, t_col in enumerate(self.topic_cols):
                topic = row.get(t_col)

                # Find corresponding sentiment column
                if i < len(self.sentiment_cols):
                    sentiment = row.get(self.sentiment_cols[i])
                else:
                    sentiment = None

                if pd.notna(topic) and isinstance(topic, str) and topic.strip():
                    topic_col = self.create_column_name(topic)
                    if topic_col in self.transformed_data.columns:
                        self.transformed_data.loc[idx, topic_col] = 1

                        # Convert sentiment to numeric value
                        if pd.notna(sentiment) and isinstance(sentiment, str):
                            sentiment_lower = sentiment.lower()
                            if 'positive' in sentiment_lower:
                                self.transformed_data.loc[idx, f'{topic_col}_sentiment'] = 1
                            elif 'negative' in sentiment_lower:
                                self.transformed_data.loc[idx, f'{topic_col}_sentiment'] = 0
                            elif 'neutral' in sentiment_lower:
                                self.transformed_data.loc[idx, f'{topic_col}_sentiment'] = 0.5

            # Process category columns (these typically don't have sentiments)
            for c_col in self.category_cols:
                category = row.get(c_col)
                if pd.notna(category) and isinstance(category, str) and category.strip():
                    category_col = self.create_column_name(category)
                    if category_col in self.transformed_data.columns:
                        self.transformed_data.loc[idx, category_col] = 1

        return self.transformed_data.shape

    def analyze_data(self):
        """
        Analyze the transformed data to provide insights.
        """
        if self.transformed_data is None:
            raise ValueError("No transformed data to analyze")

        # Identify topic columns (exclude feedback_id, selected original columns, and sentiment columns)
        excluded_cols = ['feedback_id'] + self.selected_columns
        topic_cols = [col for col in self.transformed_data.columns
                     if col not in excluded_cols and not col.endswith('_sentiment')]

        # Count occurrences of each topic
        topic_counts = {}
        for topic in topic_cols:
            topic_counts[topic] = self.transformed_data[topic].sum()

        # Sort topics by frequency
        sorted_topics = sorted(topic_counts.items(), key=lambda x: x[1], reverse=True)

        # Prepare analysis summary
        analysis_text = f"**Analysis Results**\n\n"
        analysis_text += f"Total feedbacks: {len(self.transformed_data)}\n"
        analysis_text += f"Selected original columns: {len(self.selected_columns)}\n"
        analysis_text += f"Unique topics: {len(topic_cols)}\n\n"

        if self.selected_columns:
            analysis_text += f"**Included Original Columns:** {', '.join(self.selected_columns)}\n\n"

        analysis_text += "**Top 10 Most Frequent Topics:**\n"
        for topic, count in sorted_topics[:10]:
            analysis_text += f"- {topic}: {count} occurrences\n"

        # Calculate sentiment distributions for top topics
        analysis_text += "\n**Sentiment Distributions for Top 5 Topics:**\n"
        for topic, _ in sorted_topics[:5]:
            sentiment_col = f"{topic}_sentiment"
            if sentiment_col in self.transformed_data.columns:
                # Filter rows where the topic is present
                topic_rows = self.transformed_data[self.transformed_data[topic] == 1]

                positive = (topic_rows[sentiment_col] == 1.0).sum()
                negative = (topic_rows[sentiment_col] == 0.0).sum()
                neutral = (topic_rows[sentiment_col] == 0.5).sum()

                total = positive + negative + neutral

                if total > 0:
                    analysis_text += f"\n{topic} ({total} occurrences):\n"
                    analysis_text += f"  - Positive: {positive} ({positive/total*100:.1f}%)\n"
                    analysis_text += f"  - Negative: {negative} ({negative/total*100:.1f}%)\n"
                    analysis_text += f"  - Neutral: {neutral} ({neutral/total*100:.1f}%)\n"

        # Calculate number of topics per feedback
        self.transformed_data['topic_count'] = self.transformed_data[topic_cols].sum(axis=1)
        avg_topics = self.transformed_data['topic_count'].mean()
        max_topics = self.transformed_data['topic_count'].max()

        analysis_text += f"\n**Topics per Feedback:**\n"
        analysis_text += f"- Average: {avg_topics:.2f}\n"
        analysis_text += f"- Maximum: {max_topics}\n"

        # Remove the temporary topic_count column
        self.transformed_data.drop('topic_count', axis=1, inplace=True)

        return analysis_text

    def save_transformed_data(self, output_format='xlsx'):
        """
        Save the transformed data and return the file path.
        Modified to work properly with Hugging Face Spaces downloads.
        """
        if self.transformed_data is None:
            raise ValueError("No transformed data to save")

        # Create filename with original filename prefix and timestamp
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        
        # Use original filename as prefix, or fallback to 'transformed_feedback' if not available
        prefix = self.original_filename if self.original_filename else 'transformed_feedback'

        if output_format == 'xlsx':
            filename = f"{prefix}_transformed_{timestamp}.xlsx"
            # Create temporary file that Gradio can handle
            temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
            self.transformed_data.to_excel(temp_file.name, index=False)
            temp_file.close()
            
            # Rename the temporary file to have a meaningful name
            final_path = os.path.join(tempfile.gettempdir(), filename)
            if os.path.exists(final_path):
                os.remove(final_path)
            os.rename(temp_file.name, final_path)
            
        else:  # csv
            filename = f"{prefix}_transformed_{timestamp}.csv"
            # Create temporary file that Gradio can handle
            temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
            self.transformed_data.to_csv(temp_file.name, index=False)
            temp_file.close()
            
            # Rename the temporary file to have a meaningful name
            final_path = os.path.join(tempfile.gettempdir(), filename)
            if os.path.exists(final_path):
                os.remove(final_path)
            os.rename(temp_file.name, final_path)

        # Verify file was created and is readable
        if not os.path.exists(final_path):
            raise ValueError(f"Failed to create output file: {final_path}")

        return final_path


# Gradio interface functions
def get_column_selector(file_obj):
    """
    Get a combined column preview and selector interface.
    """
    try:
        if file_obj is None:
            return gr.CheckboxGroup(
                choices=[],
                value=[],
                label="πŸ“‹ Select Columns to Include",
                info="Upload a file first to see available columns"
            )

        # Read first few rows to get column names
        file_name = file_obj if isinstance(file_obj, str) else (file_obj.name if hasattr(file_obj, 'name') else 'unknown')
        _, file_ext = os.path.splitext(file_name)

        if file_ext.lower() in ['.xlsx', '.xls']:
            df = pd.read_excel(file_obj, nrows=5)
        elif file_ext.lower() == '.csv':
            try:
                df = pd.read_csv(file_obj, nrows=5)
            except:
                df = pd.read_csv(file_obj, sep='\t', nrows=5)
        else:
            df = pd.read_csv(file_obj, sep='\t', nrows=5)

        columns = list(df.columns)
        
        # Create column display with indices for easier reference
        column_choices = [f"{i+1:2d}. {col}" for i, col in enumerate(columns)]
        
        # Return updated CheckboxGroup with numbered columns and individual rows
        return gr.CheckboxGroup(
            choices=column_choices,
            value=[],  # No columns selected by default
            label=f"πŸ“‹ Select Columns to Include ({len(columns)} available)",
            info="Choose which original columns to include in the transformed file (in addition to feedback_id). Columns are numbered for easy reference.",
            elem_classes=["column-selector"]  # Add CSS class for styling
        )

    except Exception as e:
        return gr.CheckboxGroup(
            choices=[],
            value=[],
            label="πŸ“‹ Select Columns to Include",
            info=f"Error reading file: {str(e)}"
        )


def extract_column_names(selected_display_names):
    """
    Extract actual column names from the numbered display format.
    """
    if not selected_display_names:
        return []
    
    actual_names = []
    for display_name in selected_display_names:
        # Remove the number prefix (e.g., "1. Column Name" -> "Column Name")
        if '. ' in display_name:
            actual_name = display_name.split('. ', 1)[1]
            actual_names.append(actual_name)
        else:
            actual_names.append(display_name)
    
    return actual_names


def process_file(file_obj, topic_prefix, sentiment_prefix, category_prefix,
                text_column, recommendation_column, output_format, analyze_data, selected_columns):
    """
    Main processing function for Gradio interface.
    """
    try:
        # Extract actual column names from display format
        actual_column_names = extract_column_names(selected_columns)
        
        # Initialize transformer
        transformer = FeedbackTransformer(
            topic_prefix=topic_prefix,
            sentiment_prefix=sentiment_prefix,
            category_prefix=category_prefix,
            text_column=text_column,
            recommendation_column=recommendation_column
        )

        # Load data
        rows, cols = transformer.load_data(file_obj)
        status_msg = f"βœ… Loaded {rows} rows and {cols} columns\n"

        # Set selected columns for inclusion
        transformer.set_selected_columns(actual_column_names)
        status_msg += f"πŸ“‹ Selected {len(actual_column_names)} original columns for inclusion\n"
        if actual_column_names:
            status_msg += f"   Selected columns: {', '.join(actual_column_names)}\n"

        # Identify columns
        col_info = transformer.identify_columns()
        status_msg += f"\nπŸ“Š Found columns:\n"
        status_msg += f"- Topic columns: {len(col_info['topic_cols'])}\n"
        status_msg += f"- Sentiment columns: {len(col_info['sentiment_cols'])}\n"
        status_msg += f"- Category columns: {len(col_info['category_cols'])}\n"

        # Extract unique topics
        num_topics = transformer.extract_unique_topics()
        status_msg += f"\n🎯 Found {num_topics} unique topics\n"

        # Transform data
        shape = transformer.transform_data()
        status_msg += f"\n✨ Transformed data shape: {shape[0]} rows Γ— {shape[1]} columns\n"

        # Analyze if requested
        analysis_result = ""
        if analyze_data:
            analysis_result = transformer.analyze_data()

        # Save transformed data
        output_file = transformer.save_transformed_data(output_format)
        status_msg += f"\nπŸ’Ύ File saved successfully: {os.path.basename(output_file)}\n"

        return status_msg, analysis_result, output_file

    except Exception as e:
        error_msg = f"❌ Error: {str(e)}\n\n{traceback.format_exc()}"
        return error_msg, "", None


# Create Gradio interface
with gr.Blocks(title="Feedback Topic & Sentiment Transformer", css="""
.column-selector .form-check {
    display: block !important;
    margin-bottom: 8px !important;
}
.column-selector .form-check-input {
    margin-right: 8px !important;
}
""") as demo:
    gr.Markdown("""
    # πŸ“Š Feedback Topic & Sentiment Transformer
    Transform feedback data with topic and sentiment columns into a binary matrix format.
    Each unique topic becomes a separate column with 0/1 values and associated sentiment scores.
    ### πŸ“‹ Instructions:
    1. Upload your Excel, CSV, or tab-delimited text file
    2. Select which original columns to include in the output
    3. Configure column prefixes (or use defaults)
    4. Click "Transform Data" to process
    5. Download the transformed file
    """)

    with gr.Row():
        with gr.Column(scale=1):
            # File upload
            gr.Markdown("### πŸ“‹ 1. Source file upload")
            input_file = gr.File(
                label="Upload Input File",
                file_types=[".xlsx", ".xls", ".csv", ".txt"],
                type="filepath"
            )

            # Combined column selector (replaces both preview and checkboxes)
            gr.Markdown("### πŸ“‹ 2. Column Selection")
            column_selector = gr.CheckboxGroup(
                choices=[],
                value=[],
                label="Select Columns to Include",
                info="Upload a file first to see available columns"
            )

        with gr.Column(scale=1):
            # Configuration parameters
            gr.Markdown("### βš™οΈ 3. Configuration of column prefixes ")

            topic_prefix = gr.Textbox(
                label="Topic Column Prefix",
                value="[**WORKSHOP] SwissLife Taxonomy",
                info="Prefix to identify topic columns"
            )

            sentiment_prefix = gr.Textbox(
                label="Sentiment Column Prefix",
                value="ABSA:",
                info="Prefix to identify sentiment columns"
            )

            category_prefix = gr.Textbox(
                label="Category Column Prefix",
                value="Categories:",
                info="Prefix to identify category columns"
            )

            text_column = gr.Textbox(
                label="Text Column Name",
                value="TEXT",
                info="Column containing original feedback text (for reference only)"
            )

            recommendation_column = gr.Textbox(
                label="Recommendation Column Name",
                value="Q4_Weiterempfehlung",
                info="Column containing recommendation scores (for reference only)"
            )

            output_format = gr.Radio(
                label="Output Format",
                choices=["xlsx", "csv"],
                value="xlsx"
            )

            analyze_checkbox = gr.Checkbox(
                label="Analyze transformed data",
                value=True
            )

    # Transform button
    transform_btn = gr.Button("πŸ”„ 4. Transform Data", variant="primary", size="lg")

    # Output sections
    with gr.Row():
        with gr.Column():
            status_output = gr.Textbox(
                label="Processing Status",
                lines=10,
                interactive=False
            )

        with gr.Column():
            analysis_output = gr.Markdown(
                label="Data Analysis"
            )

    # Download section - Modified for better download functionality
    with gr.Row():
        with gr.Column():
            gr.Markdown("### πŸ“₯ 5. Download Transformed File")
            output_file = gr.File(
                label="Transformed File",
                interactive=False,
                visible=True
            )

    # Event handlers
    input_file.change(
        fn=get_column_selector,
        inputs=[input_file],
        outputs=[column_selector]
    )

    transform_btn.click(
        fn=process_file,
        inputs=[
            input_file,
            topic_prefix,
            sentiment_prefix,
            category_prefix,
            text_column,
            recommendation_column,
            output_format,
            analyze_checkbox,
            column_selector
        ],
        outputs=[status_output, analysis_output, output_file]
    )

    # Examples section
    gr.Markdown("""
    ### πŸ“ Example Column Formats:
    - **Topic columns**: `[**WORKSHOP] SwissLife Taxonomy(Kommentar) 1`, `[**WORKSHOP] SwissLife Taxonomy(Kommentar) 2`
    - **Category columns**: `Categories:Topic1`, `Categories:Topic2`
    - **Sentiment columns**: `ABSA:Sentiment1`, `ABSA:Sentiment2`
    ### 🎯 Output Format:
    - **feedback_id**: Unique identifier for each row
    - **Selected original columns**: Any columns you selected from the original file
    - **Topic columns**: Each unique topic becomes a column with values 0 (absent) or 1 (present)
    - **Sentiment columns**: Each topic has an associated `_sentiment` column with values:
      - 1.0 = Positive
      - 0.5 = Neutral
      - 0.0 = Negative
    - **Output filename**: `[original_filename]_transformed_[timestamp].[format]`
    ### πŸ’‘ Tips:
    - Use the numbered column list to easily identify and select columns
    - The text and recommendation column names in configuration are now for reference only
    - To include them in output, select them using the column checkboxes
    - Click on the download button that appears after processing to download the file
    """)

# Launch the app
if __name__ == "__main__":
    demo.launch()