Spaces:
Sleeping
Sleeping
import os | |
import json | |
import gradio as gr | |
from PIL import Image | |
import torch | |
from huggingface_hub import hf_hub_download | |
import tempfile | |
# Constants | |
MODEL_ID = "MeiGen-AI/MeiGen-MultiTalk" | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
def load_models(): | |
"""Load required models""" | |
# Here we'll add model loading logic | |
pass | |
def process_video( | |
image, | |
audio_files, | |
prompt, | |
resolution="480p", | |
audio_cfg=4.0, | |
cfg=7.5, | |
seed=42, | |
max_duration=15 | |
): | |
"""Process video generation""" | |
try: | |
# Create temporary directory for processing | |
with tempfile.TemporaryDirectory() as temp_dir: | |
# Save uploaded image | |
image_path = os.path.join(temp_dir, "reference.jpg") | |
image.save(image_path) | |
# Save uploaded audio files | |
audio_paths = [] | |
for audio in audio_files: | |
audio_path = os.path.join(temp_dir, f"audio_{len(audio_paths)}.wav") | |
audio_paths.append(audio_path) | |
# Save audio file | |
with open(audio_path, "wb") as f: | |
f.write(audio) | |
# Create configuration | |
config = { | |
"image": image_path, | |
"audio": audio_paths[0] if len(audio_paths) == 1 else audio_paths, | |
"prompt": prompt, | |
"resolution": resolution, | |
"audio_cfg": float(audio_cfg), | |
"cfg": float(cfg), | |
"seed": int(seed), | |
"max_duration": int(max_duration) | |
} | |
# Save configuration | |
config_path = os.path.join(temp_dir, "config.json") | |
with open(config_path, "w") as f: | |
json.dump(config, f, indent=2) | |
# Here we'll add video generation logic | |
# For now, return a message | |
return "Video generation will be implemented here" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Create Gradio interface | |
with gr.Blocks(title="MeiGen-MultiTalk Demo") as demo: | |
gr.Markdown(""" | |
# MeiGen-MultiTalk Demo | |
Generate talking head videos from images and audio files. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label="Reference Image", type="pil") | |
audio_input = gr.Audio(label="Audio File(s)", type="binary", multiple=True) | |
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe the desired video...") | |
with gr.Row(): | |
resolution_input = gr.Dropdown( | |
choices=["480p", "720p"], | |
value="480p", | |
label="Resolution" | |
) | |
audio_cfg_input = gr.Slider( | |
minimum=1.0, | |
maximum=10.0, | |
value=4.0, | |
step=0.1, | |
label="Audio CFG" | |
) | |
with gr.Row(): | |
cfg_input = gr.Slider( | |
minimum=1.0, | |
maximum=15.0, | |
value=7.5, | |
step=0.1, | |
label="Guidance Scale" | |
) | |
seed_input = gr.Number( | |
value=42, | |
label="Random Seed", | |
precision=0 | |
) | |
max_duration_input = gr.Slider( | |
minimum=1, | |
maximum=15, | |
value=10, | |
step=1, | |
label="Max Duration (seconds)" | |
) | |
generate_btn = gr.Button("Generate Video") | |
with gr.Column(): | |
output = gr.Video(label="Generated Video") | |
generate_btn.click( | |
fn=process_video, | |
inputs=[ | |
image_input, | |
audio_input, | |
prompt_input, | |
resolution_input, | |
audio_cfg_input, | |
cfg_input, | |
seed_input, | |
max_duration_input | |
], | |
outputs=output | |
) | |
# Launch locally if running directly | |
if __name__ == "__main__": | |
demo.launch() |