File size: 4,246 Bytes
132fb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import json
import gradio as gr
from PIL import Image
import torch
from huggingface_hub import hf_hub_download
import tempfile

# Constants
MODEL_ID = "MeiGen-AI/MeiGen-MultiTalk"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

def load_models():
    """Load required models"""
    # Here we'll add model loading logic
    pass

def process_video(
    image,
    audio_files,
    prompt,
    resolution="480p",
    audio_cfg=4.0,
    cfg=7.5,
    seed=42,
    max_duration=15
):
    """Process video generation"""
    try:
        # Create temporary directory for processing
        with tempfile.TemporaryDirectory() as temp_dir:
            # Save uploaded image
            image_path = os.path.join(temp_dir, "reference.jpg")
            image.save(image_path)
            
            # Save uploaded audio files
            audio_paths = []
            for audio in audio_files:
                audio_path = os.path.join(temp_dir, f"audio_{len(audio_paths)}.wav")
                audio_paths.append(audio_path)
                # Save audio file
                with open(audio_path, "wb") as f:
                    f.write(audio)
            
            # Create configuration
            config = {
                "image": image_path,
                "audio": audio_paths[0] if len(audio_paths) == 1 else audio_paths,
                "prompt": prompt,
                "resolution": resolution,
                "audio_cfg": float(audio_cfg),
                "cfg": float(cfg),
                "seed": int(seed),
                "max_duration": int(max_duration)
            }
            
            # Save configuration
            config_path = os.path.join(temp_dir, "config.json")
            with open(config_path, "w") as f:
                json.dump(config, f, indent=2)
            
            # Here we'll add video generation logic
            # For now, return a message
            return "Video generation will be implemented here"
            
    except Exception as e:
        return f"Error: {str(e)}"

# Create Gradio interface
with gr.Blocks(title="MeiGen-MultiTalk Demo") as demo:
    gr.Markdown("""
    # MeiGen-MultiTalk Demo
    Generate talking head videos from images and audio files.
    """)
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(label="Reference Image", type="pil")
            audio_input = gr.Audio(label="Audio File(s)", type="binary", multiple=True)
            prompt_input = gr.Textbox(label="Prompt", placeholder="Describe the desired video...")
            
            with gr.Row():
                resolution_input = gr.Dropdown(
                    choices=["480p", "720p"],
                    value="480p",
                    label="Resolution"
                )
                audio_cfg_input = gr.Slider(
                    minimum=1.0,
                    maximum=10.0,
                    value=4.0,
                    step=0.1,
                    label="Audio CFG"
                )
                
            with gr.Row():
                cfg_input = gr.Slider(
                    minimum=1.0,
                    maximum=15.0,
                    value=7.5,
                    step=0.1,
                    label="Guidance Scale"
                )
                seed_input = gr.Number(
                    value=42,
                    label="Random Seed",
                    precision=0
                )
                
            max_duration_input = gr.Slider(
                minimum=1,
                maximum=15,
                value=10,
                step=1,
                label="Max Duration (seconds)"
            )
            
            generate_btn = gr.Button("Generate Video")
        
        with gr.Column():
            output = gr.Video(label="Generated Video")
            
    generate_btn.click(
        fn=process_video,
        inputs=[
            image_input,
            audio_input,
            prompt_input,
            resolution_input,
            audio_cfg_input,
            cfg_input,
            seed_input,
            max_duration_input
        ],
        outputs=output
    )

# Launch locally if running directly
if __name__ == "__main__":
    demo.launch()