File size: 5,988 Bytes
83aabd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b1ac28
83aabd5
 
 
 
 
 
34b9503
83aabd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4251847
83aabd5
 
 
 
34b9503
83aabd5
 
34b9503
83aabd5
34b9503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83aabd5
 
34b9503
83aabd5
 
 
 
 
2b1ac28
83aabd5
 
 
 
34b9503
83aabd5
 
 
 
 
34b9503
 
83aabd5
 
 
34b9503
 
 
 
 
 
 
 
83aabd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b1ac28
 
83aabd5
 
 
 
 
 
2b1ac28
83aabd5
2b1ac28
83aabd5
 
 
 
2b1ac28
83aabd5
 
2b1ac28
83aabd5
 
34b9503
83aabd5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python
# coding: utf-8

# Copyright 2021, IBM Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Flask API app and routes.
"""

__author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado"
__copyright__ = "IBM Corporation 2024"
__credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"]
__license__ = "Apache 2.0"
__version__ = "0.0.1"


from flask import Flask, request, jsonify
from flask_cors import CORS, cross_origin
from flask_restful import Resource, Api, reqparse
import control.recommendation_handler as recommendation_handler
from helpers import get_credentials, authenticate_api, save_model, inference
import config as cfg
import requests
import logging
import uuid
import json
import os
import pickle

app = Flask(__name__)

# configure logging
logging.basicConfig(
    filename='app.log',  # Log file name
    level=logging.INFO,  # Log level (INFO, DEBUG, WARNING, ERROR, CRITICAL)
    format='%(asctime)s - %(levelname)s - %(message)s'  # Log message format
)

# access the app's logger
logger = app.logger
# create user id
id = str(uuid.uuid4())

# swagger configs
app.register_blueprint(cfg.SWAGGER_BLUEPRINT, url_prefix = cfg.SWAGGER_URL)
FRONT_LOG_FILE = 'front_log.json'


@app.route("/")
def index():
    user_ip = request.remote_addr
    logger.info(f'USER {user_ip} - ID {id} - started the app')
    return app.send_static_file('demo/index.html')

@app.route("/recommend", methods=['GET'])
@cross_origin()
def recommend():
    model_id, _ =save_model.save_model()
    prompt_json = recommendation_handler.populate_json()
    args = request.args
    print("args list = ", args)
    prompt = args.get("prompt")

    umap_model_file = './models/umap/sentence-transformers/all-MiniLM-L6-v2/umap.pkl'
    with open(umap_model_file, 'rb') as f:
        umap_model = pickle.load(f)

    # Embeddings from HF API
    # hf_token, hf_url = get_credentials.get_hf_credentials()
    # api_url, headers = authenticate_api.authenticate_api(hf_token, hf_url)
    # api_url = f'https://router.huggingface.co/hf-inference/models/{model_id}/pipeline/feature-extraction'
    # embedding_fn = recommendation_handler.get_embedding_func(inference='huggingface', model_id=model_id, api_url= api_url, headers = headers)

    # Embeddings from local inference
    embedding_fn = recommendation_handler.get_embedding_func(inference='local', model_id=model_id)

    recommendation_json = recommendation_handler.recommend_prompt(prompt, prompt_json, embedding_fn, umap_model=umap_model)

    user_ip = request.remote_addr
    logger.info(f'USER - {user_ip} - ID {id} - accessed recommend route')
    logger.info(f'RECOMMEND ROUTE - request: {prompt} response: {recommendation_json}')

    return recommendation_json

@app.route("/get_thresholds", methods=['GET'])
@cross_origin()
def get_thresholds():
    hf_token, hf_url = get_credentials.get_hf_credentials()
    api_url, headers = authenticate_api.authenticate_api(hf_token, hf_url)
    prompt_json = recommendation_handler.populate_json()
    args = request.args
    prompt = args.get("prompt")
    thresholds_json = recommendation_handler.get_thresholds(prompt, prompt_json, api_url, headers)
    return thresholds_json

@app.route("/recommend_local", methods=['GET'])
@cross_origin()
def recommend_local():
    model_id, _ = save_model.save_model()
    prompt_json, _ = recommendation_handler.populate_json()
    args = request.args
    print("args list = ", args)
    prompt = args.get("prompt")
    
    umap_model_file = './models/umap/sentence-transformers/all-MiniLM-L6-v2/umap.pkl'
    with open(umap_model_file, 'rb') as f:
        umap_model = pickle.load(f)

    embedding_fn = recommendation_handler.get_embedding_func(inference='local', model_id=model_id)

    local_recommendation_json = recommendation_handler.recommend_prompt(prompt, prompt_json, embedding_fn, umap_model=umap_model)
    return local_recommendation_json

@app.route("/log", methods=['POST'])
@cross_origin()
def log():
    f_path = 'static/demo/log/'
    new_data = request.get_json()

    try:
        with open(f_path+FRONT_LOG_FILE, 'r') as f:
            existing_data = json.load(f)
    except FileNotFoundError:
        existing_data = []

    existing_data.update(new_data)

    #log_data = request.json
    with open(f_path+FRONT_LOG_FILE, 'w') as f:
        json.dump(existing_data, f)
    return jsonify({'message': 'Data added successfully', 'data': existing_data}), 201

@app.route("/demo_inference", methods=['GET'])
@cross_origin()
def demo_inference():
    args = request.args

    inference_provider = args.get('inference_provider', default='replicate')
    model_id = args.get('model_id', default="ibm-granite/granite-3.3-8b-instruct")
    temperature = args.get('temperature', default=0.5)
    max_new_tokens = args.get('max_new_tokens', default=1000)

    prompt = args.get('prompt')

    try:
        response = inference.INFERENCE_HANDLER[inference_provider](prompt, model_id, temperature, max_new_tokens)
        response.update({
            'inference_provider': inference_provider,
            'model_id': model_id,
            'temperature': temperature,
            'max_new_tokens': max_new_tokens,
        })

        return response
    except:
        return "Model Inference failed.", 500

if __name__=='__main__':
    debug_mode = os.getenv('FLASK_DEBUG', 'False').lower() in ['true', '1', 't']
    app.run(host='0.0.0.0', port='8080', debug=debug_mode)