Update app.py
Browse files
app.py
CHANGED
@@ -37,6 +37,7 @@ import logging
|
|
37 |
import uuid
|
38 |
import json
|
39 |
import os
|
|
|
40 |
|
41 |
app = Flask(__name__)
|
42 |
|
@@ -66,16 +67,31 @@ def index():
|
|
66 |
@app.route("/recommend", methods=['GET'])
|
67 |
@cross_origin()
|
68 |
def recommend():
|
69 |
-
|
70 |
-
hf_token, hf_url = get_credentials.get_hf_credentials()
|
71 |
-
api_url, headers = authenticate_api.authenticate_api(hf_token, hf_url)
|
72 |
prompt_json = recommendation_handler.populate_json()
|
73 |
args = request.args
|
|
|
74 |
prompt = args.get("prompt")
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
logger.info(f'USER - {user_ip} - ID {id} - accessed recommend route')
|
78 |
logger.info(f'RECOMMEND ROUTE - request: {prompt} response: {recommendation_json}')
|
|
|
79 |
return recommendation_json
|
80 |
|
81 |
@app.route("/get_thresholds", methods=['GET'])
|
@@ -84,24 +100,27 @@ def get_thresholds():
|
|
84 |
hf_token, hf_url = get_credentials.get_hf_credentials()
|
85 |
api_url, headers = authenticate_api.authenticate_api(hf_token, hf_url)
|
86 |
prompt_json = recommendation_handler.populate_json()
|
87 |
-
model_id = 'sentence-transformers/all-minilm-l6-v2'
|
88 |
args = request.args
|
89 |
-
#print("args list = ", args)
|
90 |
prompt = args.get("prompt")
|
91 |
-
thresholds_json = recommendation_handler.get_thresholds(prompt, prompt_json, api_url,
|
92 |
-
headers, model_id)
|
93 |
return thresholds_json
|
94 |
|
95 |
@app.route("/recommend_local", methods=['GET'])
|
96 |
@cross_origin()
|
97 |
def recommend_local():
|
98 |
-
model_id,
|
99 |
-
prompt_json = recommendation_handler.populate_json()
|
100 |
args = request.args
|
101 |
print("args list = ", args)
|
102 |
prompt = args.get("prompt")
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
return local_recommendation_json
|
106 |
|
107 |
@app.route("/log", methods=['POST'])
|
@@ -149,5 +168,5 @@ def demo_inference():
|
|
149 |
return "Model Inference failed.", 500
|
150 |
|
151 |
if __name__=='__main__':
|
152 |
-
debug_mode = os.getenv('FLASK_DEBUG', '
|
153 |
app.run(host='0.0.0.0', port='8080', debug=debug_mode)
|
|
|
37 |
import uuid
|
38 |
import json
|
39 |
import os
|
40 |
+
import pickle
|
41 |
|
42 |
app = Flask(__name__)
|
43 |
|
|
|
67 |
@app.route("/recommend", methods=['GET'])
|
68 |
@cross_origin()
|
69 |
def recommend():
|
70 |
+
model_id, _ =save_model.save_model()
|
|
|
|
|
71 |
prompt_json = recommendation_handler.populate_json()
|
72 |
args = request.args
|
73 |
+
print("args list = ", args)
|
74 |
prompt = args.get("prompt")
|
75 |
+
|
76 |
+
umap_model_file = './models/umap/sentence-transformers/all-MiniLM-L6-v2/umap.pkl'
|
77 |
+
with open(umap_model_file, 'rb') as f:
|
78 |
+
umap_model = pickle.load(f)
|
79 |
+
|
80 |
+
# Embeddings from HF API
|
81 |
+
# hf_token, hf_url = get_credentials.get_hf_credentials()
|
82 |
+
# api_url, headers = authenticate_api.authenticate_api(hf_token, hf_url)
|
83 |
+
# api_url = f'https://router.huggingface.co/hf-inference/models/{model_id}/pipeline/feature-extraction'
|
84 |
+
# embedding_fn = recommendation_handler.get_embedding_func(inference='huggingface', model_id=model_id, api_url= api_url, headers = headers)
|
85 |
+
|
86 |
+
# Embeddings from local inference
|
87 |
+
embedding_fn = recommendation_handler.get_embedding_func(inference='local', model_id=model_id)
|
88 |
+
|
89 |
+
recommendation_json = recommendation_handler.recommend_prompt(prompt, prompt_json, embedding_fn, umap_model=umap_model)
|
90 |
+
|
91 |
+
user_ip = request.remote_addr
|
92 |
logger.info(f'USER - {user_ip} - ID {id} - accessed recommend route')
|
93 |
logger.info(f'RECOMMEND ROUTE - request: {prompt} response: {recommendation_json}')
|
94 |
+
|
95 |
return recommendation_json
|
96 |
|
97 |
@app.route("/get_thresholds", methods=['GET'])
|
|
|
100 |
hf_token, hf_url = get_credentials.get_hf_credentials()
|
101 |
api_url, headers = authenticate_api.authenticate_api(hf_token, hf_url)
|
102 |
prompt_json = recommendation_handler.populate_json()
|
|
|
103 |
args = request.args
|
|
|
104 |
prompt = args.get("prompt")
|
105 |
+
thresholds_json = recommendation_handler.get_thresholds(prompt, prompt_json, api_url, headers)
|
|
|
106 |
return thresholds_json
|
107 |
|
108 |
@app.route("/recommend_local", methods=['GET'])
|
109 |
@cross_origin()
|
110 |
def recommend_local():
|
111 |
+
model_id, _ = save_model.save_model()
|
112 |
+
prompt_json, _ = recommendation_handler.populate_json()
|
113 |
args = request.args
|
114 |
print("args list = ", args)
|
115 |
prompt = args.get("prompt")
|
116 |
+
|
117 |
+
umap_model_file = './models/umap/sentence-transformers/all-MiniLM-L6-v2/umap.pkl'
|
118 |
+
with open(umap_model_file, 'rb') as f:
|
119 |
+
umap_model = pickle.load(f)
|
120 |
+
|
121 |
+
embedding_fn = recommendation_handler.get_embedding_func(inference='local', model_id=model_id)
|
122 |
+
|
123 |
+
local_recommendation_json = recommendation_handler.recommend_prompt(prompt, prompt_json, embedding_fn, umap_model=umap_model)
|
124 |
return local_recommendation_json
|
125 |
|
126 |
@app.route("/log", methods=['POST'])
|
|
|
168 |
return "Model Inference failed.", 500
|
169 |
|
170 |
if __name__=='__main__':
|
171 |
+
debug_mode = os.getenv('FLASK_DEBUG', 'False').lower() in ['true', '1', 't']
|
172 |
app.run(host='0.0.0.0', port='8080', debug=debug_mode)
|