Spaces:
Sleeping
Sleeping
File size: 11,941 Bytes
7ee22fe 10e9b7d 7ee22fe 10e9b7d eccf8e4 3c4371f 24dfa55 7ee22fe 24dfa55 7ee22fe 10e9b7d e80aab9 3db6293 7ee22fe 24dfa55 31243f4 7ee22fe 31243f4 7ee22fe 24dfa55 7ee22fe 31243f4 7ee22fe 24dfa55 7ee22fe 24dfa55 7ee22fe 24dfa55 7ee22fe 24dfa55 4021bf3 7ee22fe 31243f4 7ee22fe 31243f4 7ee22fe e80aab9 3c4371f 7ee22fe 7d65c66 7ee22fe 31243f4 7ee22fe 31243f4 7ee22fe 31243f4 7ee22fe 31243f4 7d65c66 7ee22fe 31243f4 7ee22fe 31243f4 7ee22fe e80aab9 7ee22fe e80aab9 7ee22fe 31243f4 e80aab9 3c4371f e80aab9 7ee22fe 31243f4 7ee22fe e80aab9 7ee22fe 3c4371f e80aab9 3c4371f e80aab9 7d65c66 7ee22fe 3c4371f 7ee22fe 31243f4 7ee22fe 3c4371f 7ee22fe 31243f4 7ee22fe 7d65c66 7ee22fe 31243f4 e80aab9 7ee22fe e80aab9 7ee22fe e80aab9 7ee22fe e80aab9 7ee22fe e80aab9 7ee22fe 3c4371f 7ee22fe 7d65c66 7ee22fe 7d65c66 3c4371f 7ee22fe 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
"""
Agent Evaluation Runner
======================
This module implements a framework for evaluating LLM agents against a set of questions
and submitting the results to a scoring server.
Main components:
- BasicAgent: The agent implementation that processes questions
- Evaluation functions: For running and submitting results
- Gradio interface: For user interaction
"""
import os
import logging
from typing import Tuple, List, Dict, Any, Optional
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from agent import build_graph
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S"
)
logger = logging.getLogger(__name__)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
REQUEST_TIMEOUT = 60 # seconds
class BasicAgent:
"""
A LangGraph-based agent that answers questions using a graph-based workflow.
This agent takes natural language questions, processes them through a
predefined graph workflow, and returns the answer.
Attributes:
graph: The LangGraph workflow that processes the questions
"""
def __init__(self):
"""Initialize the agent with a graph-based workflow."""
logger.info("Initializing BasicAgent")
self.graph = build_graph()
def __call__(self, question: str) -> str:
"""
Process a question and return an answer.
Args:
question: The natural language question to process
Returns:
The agent's answer to the question
"""
logger.info(f"Processing question (first 50 chars): {question[:50]}...")
# Wrap the question in a HumanMessage from langchain_core
messages = [HumanMessage(content=question)]
# Process through the graph
messages = self.graph.invoke({"messages": messages})
# Extract and clean the answer
answer = messages['messages'][-1].content
# Remove the "FINAL ANSWER:" prefix if present
return answer[14:] if answer.startswith("FINAL ANSWER:") else answer
def fetch_questions(api_url: str) -> List[Dict[str, Any]]:
"""
Fetch questions from the evaluation server.
Args:
api_url: Base URL of the evaluation API
Returns:
List of question data dictionaries
Raises:
requests.exceptions.RequestException: If there's an error fetching questions
"""
questions_url = f"{api_url}/questions"
logger.info(f"Fetching questions from: {questions_url}")
response = requests.get(questions_url, timeout=REQUEST_TIMEOUT)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
raise ValueError("Fetched questions list is empty or invalid format")
logger.info(f"Successfully fetched {len(questions_data)} questions")
return questions_data
def run_agent_on_questions(
agent: BasicAgent,
questions_data: List[Dict[str, Any]]
) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
"""
Run the agent on a list of questions.
Args:
agent: The agent to run
questions_data: List of question data dictionaries
Returns:
Tuple of (answers_payload, results_log)
"""
results_log = []
answers_payload = []
logger.info(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
logger.warning(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
# Prepare answer for submission
answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer
})
# Log result for display
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
logger.error(f"Error running agent on task {task_id}: {e}", exc_info=True)
# Log error in results
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
return answers_payload, results_log
def submit_answers(
api_url: str,
username: str,
agent_code: str,
answers_payload: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""
Submit answers to the evaluation server.
Args:
api_url: Base URL of the evaluation API
username: Hugging Face username
agent_code: URL to the agent code repository
answers_payload: List of answer dictionaries
Returns:
Response data from the server
Raises:
requests.exceptions.RequestException: If there's an error during submission
"""
submit_url = f"{api_url}/submit"
# Prepare submission data
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
# Submit answers
response = requests.post(submit_url, json=submission_data, timeout=REQUEST_TIMEOUT)
response.raise_for_status()
result_data = response.json()
logger.info("Submission successful")
return result_data
def run_and_submit_all(profile: Optional[gr.OAuthProfile] = None) -> Tuple[str, pd.DataFrame]:
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
Args:
profile: Gradio OAuth profile containing user information
Returns:
Tuple of (status_message, results_dataframe)
"""
# Check if user is logged in
if not profile:
logger.warning("User not logged in")
return "Please Login to Hugging Face with the button.", None
username = profile.username
logger.info(f"User logged in: {username}")
# Get the space ID for linking to code
space_id = os.getenv("SPACE_ID")
api_url = DEFAULT_API_URL
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
# 1. Instantiate Agent
agent = BasicAgent()
# 2. Fetch Questions
questions_data = fetch_questions(api_url)
# 3. Run Agent on Questions
answers_payload, results_log = run_agent_on_questions(agent, questions_data)
if not answers_payload:
logger.warning("Agent did not produce any answers to submit")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Submit Answers
result_data = submit_answers(api_url, username, agent_code, answers_payload)
# 5. Format and Return Results
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
# Handle HTTP errors with detailed error information
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
logger.error(status_message)
results_df = pd.DataFrame(results_log if 'results_log' in locals() else [])
return status_message, results_df
except requests.exceptions.Timeout:
status_message = f"Submission Failed: The request timed out after {REQUEST_TIMEOUT} seconds"
logger.error(status_message)
results_df = pd.DataFrame(results_log if 'results_log' in locals() else [])
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred: {str(e)}"
logger.error(status_message, exc_info=True)
results_df = pd.DataFrame(results_log if 'results_log' in locals() else [])
return status_message, results_df
def create_gradio_interface() -> gr.Blocks:
"""
Create and configure the Gradio interface.
Returns:
Configured Gradio Blocks interface
"""
with gr.Blocks() as demo:
gr.Markdown("# Agent Evaluation Runner")
gr.Markdown(
"""
## Instructions
1. **Clone this space** and modify the code to define your agent's logic, tools, and dependencies
2. **Log in to your Hugging Face account** using the button below (required for submission)
3. **Run Evaluation** to fetch questions, run your agent, and submit answers
## Important Notes
- The evaluation process may take several minutes to complete
- This agent framework is intentionally minimal to allow for your own improvements
- Consider implementing caching or async processing for better performance
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(
label="Run Status / Submission Result",
lines=5,
interactive=False
)
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
return demo
def check_environment() -> None:
"""
Check and log environment variables at startup.
"""
logger.info("-" * 30 + " App Starting " + "-" * 30)
# Check for SPACE_HOST
space_host = os.getenv("SPACE_HOST")
if space_host:
logger.info(f"✅ SPACE_HOST found: {space_host}")
logger.info(f" Runtime URL should be: https://{space_host}.hf.space")
else:
logger.info("ℹ️ SPACE_HOST environment variable not found (running locally?).")
# Check for SPACE_ID
space_id = os.getenv("SPACE_ID")
if space_id:
logger.info(f"✅ SPACE_ID found: {space_id}")
logger.info(f" Repo URL: https://huggingface.co/spaces/{space_id}")
logger.info(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
else:
logger.info("ℹ️ SPACE_ID environment variable not found (running locally?).")
logger.info("-" * (60 + len(" App Starting ")) + "\n")
if __name__ == "__main__":
# Check environment at startup
check_environment()
# Create and launch Gradio interface
logger.info("Launching Gradio Interface for Agent Evaluation...")
demo = create_gradio_interface()
demo.launch(debug=True, share=False) |