Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,119 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
import
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
from langchain_core.messages import HumanMessage
|
7 |
-
from agent import build_graph
|
8 |
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
# (Keep Constants as is)
|
12 |
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
-
|
15 |
-
# --- Basic Agent Definition ---
|
16 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
17 |
|
18 |
|
19 |
class BasicAgent:
|
20 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def __init__(self):
|
22 |
-
|
|
|
23 |
self.graph = build_graph()
|
24 |
-
|
25 |
def __call__(self, question: str) -> str:
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# Wrap the question in a HumanMessage from langchain_core
|
28 |
messages = [HumanMessage(content=question)]
|
|
|
|
|
29 |
messages = self.graph.invoke({"messages": messages})
|
|
|
|
|
30 |
answer = messages['messages'][-1].content
|
31 |
-
|
|
|
|
|
32 |
|
33 |
|
34 |
-
def
|
35 |
"""
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"""
|
39 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
40 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
41 |
-
|
42 |
-
if profile:
|
43 |
-
username= f"{profile.username}"
|
44 |
-
print(f"User logged in: {username}")
|
45 |
-
else:
|
46 |
-
print("User not logged in.")
|
47 |
-
return "Please Login to Hugging Face with the button.", None
|
48 |
-
|
49 |
-
api_url = DEFAULT_API_URL
|
50 |
questions_url = f"{api_url}/questions"
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
54 |
-
try:
|
55 |
-
agent = BasicAgent()
|
56 |
-
except Exception as e:
|
57 |
-
print(f"Error instantiating agent: {e}")
|
58 |
-
return f"Error initializing agent: {e}", None
|
59 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
60 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
61 |
-
print(agent_code)
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
78 |
-
print(f"Response text: {response.text[:500]}")
|
79 |
-
return f"Error decoding server response for questions: {e}", None
|
80 |
-
except Exception as e:
|
81 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
82 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
83 |
-
|
84 |
-
# 3. Run your Agent
|
85 |
results_log = []
|
86 |
answers_payload = []
|
87 |
-
|
|
|
|
|
88 |
for item in questions_data:
|
89 |
task_id = item.get("task_id")
|
90 |
question_text = item.get("question")
|
|
|
91 |
if not task_id or question_text is None:
|
92 |
-
|
93 |
continue
|
|
|
94 |
try:
|
95 |
submitted_answer = agent(question_text)
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
except Exception as e:
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
if not answers_payload:
|
103 |
-
print("Agent did not produce any answers to submit.")
|
104 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
try:
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
final_status = (
|
118 |
f"Submission Successful!\n"
|
119 |
f"User: {result_data.get('username')}\n"
|
@@ -121,86 +249,119 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
121 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
122 |
f"Message: {result_data.get('message', 'No message received.')}"
|
123 |
)
|
124 |
-
|
125 |
results_df = pd.DataFrame(results_log)
|
126 |
return final_status, results_df
|
|
|
127 |
except requests.exceptions.HTTPError as e:
|
|
|
128 |
error_detail = f"Server responded with status {e.response.status_code}."
|
129 |
try:
|
130 |
error_json = e.response.json()
|
131 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
132 |
except requests.exceptions.JSONDecodeError:
|
133 |
error_detail += f" Response: {e.response.text[:500]}"
|
|
|
134 |
status_message = f"Submission Failed: {error_detail}"
|
135 |
-
|
136 |
-
|
|
|
137 |
return status_message, results_df
|
|
|
138 |
except requests.exceptions.Timeout:
|
139 |
-
status_message = "Submission Failed: The request timed out
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
except requests.exceptions.RequestException as e:
|
144 |
-
status_message = f"Submission Failed: Network error - {e}"
|
145 |
-
print(status_message)
|
146 |
-
results_df = pd.DataFrame(results_log)
|
147 |
return status_message, results_df
|
|
|
148 |
except Exception as e:
|
149 |
-
status_message = f"An unexpected error occurred
|
150 |
-
|
151 |
-
|
|
|
152 |
return status_message, results_df
|
153 |
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
178 |
|
179 |
-
run_button.click(
|
180 |
-
fn=run_and_submit_all,
|
181 |
-
outputs=[status_output, results_table]
|
182 |
-
)
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
193 |
else:
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
200 |
else:
|
201 |
-
|
|
|
|
|
202 |
|
203 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
204 |
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
demo.launch(debug=True, share=False)
|
|
|
1 |
+
"""
|
2 |
+
Agent Evaluation Runner
|
3 |
+
======================
|
4 |
+
This module implements a framework for evaluating LLM agents against a set of questions
|
5 |
+
and submitting the results to a scoring server.
|
6 |
+
|
7 |
+
Main components:
|
8 |
+
- BasicAgent: The agent implementation that processes questions
|
9 |
+
- Evaluation functions: For running and submitting results
|
10 |
+
- Gradio interface: For user interaction
|
11 |
+
"""
|
12 |
+
|
13 |
import os
|
14 |
+
import logging
|
15 |
+
from typing import Tuple, List, Dict, Any, Optional
|
16 |
+
|
17 |
import gradio as gr
|
18 |
import requests
|
19 |
import pandas as pd
|
20 |
from langchain_core.messages import HumanMessage
|
|
|
21 |
|
22 |
+
from agent import build_graph
|
23 |
|
24 |
+
# Configure logging
|
25 |
+
logging.basicConfig(
|
26 |
+
level=logging.INFO,
|
27 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
28 |
+
datefmt="%Y-%m-%d %H:%M:%S"
|
29 |
+
)
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
|
|
|
32 |
# --- Constants ---
|
33 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
34 |
+
REQUEST_TIMEOUT = 60 # seconds
|
|
|
|
|
35 |
|
36 |
|
37 |
class BasicAgent:
|
38 |
+
"""
|
39 |
+
A LangGraph-based agent that answers questions using a graph-based workflow.
|
40 |
+
|
41 |
+
This agent takes natural language questions, processes them through a
|
42 |
+
predefined graph workflow, and returns the answer.
|
43 |
+
|
44 |
+
Attributes:
|
45 |
+
graph: The LangGraph workflow that processes the questions
|
46 |
+
"""
|
47 |
+
|
48 |
def __init__(self):
|
49 |
+
"""Initialize the agent with a graph-based workflow."""
|
50 |
+
logger.info("Initializing BasicAgent")
|
51 |
self.graph = build_graph()
|
52 |
+
|
53 |
def __call__(self, question: str) -> str:
|
54 |
+
"""
|
55 |
+
Process a question and return an answer.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
question: The natural language question to process
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
The agent's answer to the question
|
62 |
+
"""
|
63 |
+
logger.info(f"Processing question (first 50 chars): {question[:50]}...")
|
64 |
+
|
65 |
# Wrap the question in a HumanMessage from langchain_core
|
66 |
messages = [HumanMessage(content=question)]
|
67 |
+
|
68 |
+
# Process through the graph
|
69 |
messages = self.graph.invoke({"messages": messages})
|
70 |
+
|
71 |
+
# Extract and clean the answer
|
72 |
answer = messages['messages'][-1].content
|
73 |
+
|
74 |
+
# Remove the "FINAL ANSWER:" prefix if present
|
75 |
+
return answer[14:] if answer.startswith("FINAL ANSWER:") else answer
|
76 |
|
77 |
|
78 |
+
def fetch_questions(api_url: str) -> List[Dict[str, Any]]:
|
79 |
"""
|
80 |
+
Fetch questions from the evaluation server.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
api_url: Base URL of the evaluation API
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
List of question data dictionaries
|
87 |
+
|
88 |
+
Raises:
|
89 |
+
requests.exceptions.RequestException: If there's an error fetching questions
|
90 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
questions_url = f"{api_url}/questions"
|
92 |
+
logger.info(f"Fetching questions from: {questions_url}")
|
93 |
+
|
94 |
+
response = requests.get(questions_url, timeout=REQUEST_TIMEOUT)
|
95 |
+
response.raise_for_status()
|
96 |
+
|
97 |
+
questions_data = response.json()
|
98 |
+
if not questions_data:
|
99 |
+
raise ValueError("Fetched questions list is empty or invalid format")
|
100 |
+
|
101 |
+
logger.info(f"Successfully fetched {len(questions_data)} questions")
|
102 |
+
return questions_data
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
def run_agent_on_questions(
|
106 |
+
agent: BasicAgent,
|
107 |
+
questions_data: List[Dict[str, Any]]
|
108 |
+
) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
|
109 |
+
"""
|
110 |
+
Run the agent on a list of questions.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
agent: The agent to run
|
114 |
+
questions_data: List of question data dictionaries
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
Tuple of (answers_payload, results_log)
|
118 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
results_log = []
|
120 |
answers_payload = []
|
121 |
+
|
122 |
+
logger.info(f"Running agent on {len(questions_data)} questions...")
|
123 |
+
|
124 |
for item in questions_data:
|
125 |
task_id = item.get("task_id")
|
126 |
question_text = item.get("question")
|
127 |
+
|
128 |
if not task_id or question_text is None:
|
129 |
+
logger.warning(f"Skipping item with missing task_id or question: {item}")
|
130 |
continue
|
131 |
+
|
132 |
try:
|
133 |
submitted_answer = agent(question_text)
|
134 |
+
|
135 |
+
# Prepare answer for submission
|
136 |
+
answers_payload.append({
|
137 |
+
"task_id": task_id,
|
138 |
+
"submitted_answer": submitted_answer
|
139 |
+
})
|
140 |
+
|
141 |
+
# Log result for display
|
142 |
+
results_log.append({
|
143 |
+
"Task ID": task_id,
|
144 |
+
"Question": question_text,
|
145 |
+
"Submitted Answer": submitted_answer
|
146 |
+
})
|
147 |
+
|
148 |
except Exception as e:
|
149 |
+
logger.error(f"Error running agent on task {task_id}: {e}", exc_info=True)
|
150 |
+
|
151 |
+
# Log error in results
|
152 |
+
results_log.append({
|
153 |
+
"Task ID": task_id,
|
154 |
+
"Question": question_text,
|
155 |
+
"Submitted Answer": f"AGENT ERROR: {e}"
|
156 |
+
})
|
157 |
+
|
158 |
+
return answers_payload, results_log
|
159 |
|
|
|
|
|
|
|
160 |
|
161 |
+
def submit_answers(
|
162 |
+
api_url: str,
|
163 |
+
username: str,
|
164 |
+
agent_code: str,
|
165 |
+
answers_payload: List[Dict[str, Any]]
|
166 |
+
) -> Dict[str, Any]:
|
167 |
+
"""
|
168 |
+
Submit answers to the evaluation server.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
api_url: Base URL of the evaluation API
|
172 |
+
username: Hugging Face username
|
173 |
+
agent_code: URL to the agent code repository
|
174 |
+
answers_payload: List of answer dictionaries
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
Response data from the server
|
178 |
+
|
179 |
+
Raises:
|
180 |
+
requests.exceptions.RequestException: If there's an error during submission
|
181 |
+
"""
|
182 |
+
submit_url = f"{api_url}/submit"
|
183 |
+
|
184 |
+
# Prepare submission data
|
185 |
+
submission_data = {
|
186 |
+
"username": username.strip(),
|
187 |
+
"agent_code": agent_code,
|
188 |
+
"answers": answers_payload
|
189 |
+
}
|
190 |
+
|
191 |
+
logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
192 |
+
|
193 |
+
# Submit answers
|
194 |
+
response = requests.post(submit_url, json=submission_data, timeout=REQUEST_TIMEOUT)
|
195 |
+
response.raise_for_status()
|
196 |
+
|
197 |
+
result_data = response.json()
|
198 |
+
logger.info("Submission successful")
|
199 |
+
|
200 |
+
return result_data
|
201 |
+
|
202 |
|
203 |
+
def run_and_submit_all(profile: Optional[gr.OAuthProfile] = None) -> Tuple[str, pd.DataFrame]:
|
204 |
+
"""
|
205 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
206 |
+
and displays the results.
|
207 |
+
|
208 |
+
Args:
|
209 |
+
profile: Gradio OAuth profile containing user information
|
210 |
+
|
211 |
+
Returns:
|
212 |
+
Tuple of (status_message, results_dataframe)
|
213 |
+
"""
|
214 |
+
# Check if user is logged in
|
215 |
+
if not profile:
|
216 |
+
logger.warning("User not logged in")
|
217 |
+
return "Please Login to Hugging Face with the button.", None
|
218 |
+
|
219 |
+
username = profile.username
|
220 |
+
logger.info(f"User logged in: {username}")
|
221 |
+
|
222 |
+
# Get the space ID for linking to code
|
223 |
+
space_id = os.getenv("SPACE_ID")
|
224 |
+
api_url = DEFAULT_API_URL
|
225 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
226 |
+
|
227 |
try:
|
228 |
+
# 1. Instantiate Agent
|
229 |
+
agent = BasicAgent()
|
230 |
+
|
231 |
+
# 2. Fetch Questions
|
232 |
+
questions_data = fetch_questions(api_url)
|
233 |
+
|
234 |
+
# 3. Run Agent on Questions
|
235 |
+
answers_payload, results_log = run_agent_on_questions(agent, questions_data)
|
236 |
+
|
237 |
+
if not answers_payload:
|
238 |
+
logger.warning("Agent did not produce any answers to submit")
|
239 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
240 |
+
|
241 |
+
# 4. Submit Answers
|
242 |
+
result_data = submit_answers(api_url, username, agent_code, answers_payload)
|
243 |
+
|
244 |
+
# 5. Format and Return Results
|
245 |
final_status = (
|
246 |
f"Submission Successful!\n"
|
247 |
f"User: {result_data.get('username')}\n"
|
|
|
249 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
250 |
f"Message: {result_data.get('message', 'No message received.')}"
|
251 |
)
|
252 |
+
|
253 |
results_df = pd.DataFrame(results_log)
|
254 |
return final_status, results_df
|
255 |
+
|
256 |
except requests.exceptions.HTTPError as e:
|
257 |
+
# Handle HTTP errors with detailed error information
|
258 |
error_detail = f"Server responded with status {e.response.status_code}."
|
259 |
try:
|
260 |
error_json = e.response.json()
|
261 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
262 |
except requests.exceptions.JSONDecodeError:
|
263 |
error_detail += f" Response: {e.response.text[:500]}"
|
264 |
+
|
265 |
status_message = f"Submission Failed: {error_detail}"
|
266 |
+
logger.error(status_message)
|
267 |
+
|
268 |
+
results_df = pd.DataFrame(results_log if 'results_log' in locals() else [])
|
269 |
return status_message, results_df
|
270 |
+
|
271 |
except requests.exceptions.Timeout:
|
272 |
+
status_message = f"Submission Failed: The request timed out after {REQUEST_TIMEOUT} seconds"
|
273 |
+
logger.error(status_message)
|
274 |
+
|
275 |
+
results_df = pd.DataFrame(results_log if 'results_log' in locals() else [])
|
|
|
|
|
|
|
|
|
276 |
return status_message, results_df
|
277 |
+
|
278 |
except Exception as e:
|
279 |
+
status_message = f"An unexpected error occurred: {str(e)}"
|
280 |
+
logger.error(status_message, exc_info=True)
|
281 |
+
|
282 |
+
results_df = pd.DataFrame(results_log if 'results_log' in locals() else [])
|
283 |
return status_message, results_df
|
284 |
|
285 |
|
286 |
+
def create_gradio_interface() -> gr.Blocks:
|
287 |
+
"""
|
288 |
+
Create and configure the Gradio interface.
|
289 |
+
|
290 |
+
Returns:
|
291 |
+
Configured Gradio Blocks interface
|
292 |
+
"""
|
293 |
+
with gr.Blocks() as demo:
|
294 |
+
gr.Markdown("# Agent Evaluation Runner")
|
295 |
+
gr.Markdown(
|
296 |
+
"""
|
297 |
+
## Instructions
|
298 |
+
|
299 |
+
1. **Clone this space** and modify the code to define your agent's logic, tools, and dependencies
|
300 |
+
2. **Log in to your Hugging Face account** using the button below (required for submission)
|
301 |
+
3. **Run Evaluation** to fetch questions, run your agent, and submit answers
|
302 |
+
|
303 |
+
## Important Notes
|
304 |
+
|
305 |
+
- The evaluation process may take several minutes to complete
|
306 |
+
- This agent framework is intentionally minimal to allow for your own improvements
|
307 |
+
- Consider implementing caching or async processing for better performance
|
308 |
+
"""
|
309 |
+
)
|
310 |
+
|
311 |
+
gr.LoginButton()
|
312 |
|
313 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
314 |
|
315 |
+
status_output = gr.Textbox(
|
316 |
+
label="Run Status / Submission Result",
|
317 |
+
lines=5,
|
318 |
+
interactive=False
|
319 |
+
)
|
320 |
+
|
321 |
+
results_table = gr.DataFrame(
|
322 |
+
label="Questions and Agent Answers",
|
323 |
+
wrap=True
|
324 |
+
)
|
325 |
|
326 |
+
run_button.click(
|
327 |
+
fn=run_and_submit_all,
|
328 |
+
outputs=[status_output, results_table]
|
329 |
+
)
|
330 |
+
|
331 |
+
return demo
|
332 |
|
|
|
|
|
|
|
|
|
333 |
|
334 |
+
def check_environment() -> None:
|
335 |
+
"""
|
336 |
+
Check and log environment variables at startup.
|
337 |
+
"""
|
338 |
+
logger.info("-" * 30 + " App Starting " + "-" * 30)
|
339 |
+
|
340 |
+
# Check for SPACE_HOST
|
341 |
+
space_host = os.getenv("SPACE_HOST")
|
342 |
+
if space_host:
|
343 |
+
logger.info(f"✅ SPACE_HOST found: {space_host}")
|
344 |
+
logger.info(f" Runtime URL should be: https://{space_host}.hf.space")
|
345 |
else:
|
346 |
+
logger.info("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
347 |
+
|
348 |
+
# Check for SPACE_ID
|
349 |
+
space_id = os.getenv("SPACE_ID")
|
350 |
+
if space_id:
|
351 |
+
logger.info(f"✅ SPACE_ID found: {space_id}")
|
352 |
+
logger.info(f" Repo URL: https://huggingface.co/spaces/{space_id}")
|
353 |
+
logger.info(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
|
354 |
else:
|
355 |
+
logger.info("ℹ️ SPACE_ID environment variable not found (running locally?).")
|
356 |
+
|
357 |
+
logger.info("-" * (60 + len(" App Starting ")) + "\n")
|
358 |
|
|
|
359 |
|
360 |
+
if __name__ == "__main__":
|
361 |
+
# Check environment at startup
|
362 |
+
check_environment()
|
363 |
+
|
364 |
+
# Create and launch Gradio interface
|
365 |
+
logger.info("Launching Gradio Interface for Agent Evaluation...")
|
366 |
+
demo = create_gradio_interface()
|
367 |
demo.launch(debug=True, share=False)
|