LLM-Compatibilty-Advisor / src /streamlit_app.py
qwerty45-uiop's picture
Update src/streamlit_app.py
5bef9cc verified
raw
history blame
24.5 kB
#!/usr/bin/env python3
"""
LLM Compatibility Advisor - Enhanced Streamlit Application with Expanded Model List
Author: Assistant
Description: Provides device-based LLM recommendations based on RAM capacity
Requirements: streamlit, pandas, plotly, openpyxl
"""
import streamlit as st
import pandas as pd
import re
import plotly.express as px
import plotly.graph_objects as go
from typing import Optional, Tuple, List, Dict
# โœ… MUST be the first Streamlit command
st.set_page_config(
page_title="LLM Compatibility Advisor",
layout="wide",
page_icon="๐Ÿง ",
initial_sidebar_state="expanded"
)
# Enhanced data loading with error handling
@st.cache_data
def load_data():
try:
df = pd.read_excel("BITS_INTERNS.xlsx", sheet_name="Form Responses 1")
df.columns = df.columns.str.strip()
return df, None
except FileNotFoundError:
return None, "Excel file 'BITS_INTERNS.xlsx' not found. Please upload the file."
except Exception as e:
return None, f"Error loading data: {str(e)}"
# Enhanced RAM extraction with better parsing
def extract_numeric_ram(ram) -> Optional[int]:
if pd.isna(ram):
return None
ram_str = str(ram).lower().replace(" ", "")
# Handle various formats: "8GB", "8 GB", "8gb", "8192MB", etc.
gb_match = re.search(r"(\d+(?:\.\d+)?)(?:gb|g)", ram_str)
if gb_match:
return int(float(gb_match.group(1)))
# Handle MB format
mb_match = re.search(r"(\d+)(?:mb|m)", ram_str)
if mb_match:
return max(1, int(int(mb_match.group(1)) / 1024)) # Convert MB to GB
# Handle plain numbers (assume GB)
plain_match = re.search(r"(\d+)", ram_str)
if plain_match:
return int(plain_match.group(1))
return None
# Comprehensive LLM database with categories
LLM_DATABASE = {
"ultra_low": { # โ‰ค2GB
"general": ["DistilBERT", "MobileBERT", "TinyBERT", "BERT-Tiny", "DistilRoBERTa"],
"specialized": ["TinyLLaMA-1.1B", "PY007/TinyLlama-1.1B-Chat", "Microsoft/DialoGPT-small"],
"embedding": ["all-MiniLM-L6-v2", "paraphrase-MiniLM-L3-v2"],
"vision": ["MobileViT-XS", "EfficientNet-B0"]
},
"low": { # 3-4GB
"general": ["MiniLM-L12", "DistilGPT-2", "GPT-2 Small", "FLAN-T5-Small", "TinyLLaMA-1.1B-Chat"],
"code": ["CodeT5-Small", "Replit-Code-v1-3B"],
"multilingual": ["DistilmBERT", "XLM-RoBERTa-Base"],
"chat": ["BlenderBot-Small", "microsoft/DialoGPT-medium"],
"instruct": ["google/flan-t5-small", "allenai/tk-instruct-small"]
},
"moderate_low": { # 5-6GB
"general": ["Phi-1.5", "Gemma-2B", "Alpaca-3B", "RedPajama-3B", "OpenLLaMA-3B"],
"code": ["CodeGen-2.5B", "StarCoder-1B", "SantaCoder-1.1B", "CodeT5p-2B"],
"chat": ["Vicuna-3B", "ChatGLM2-6B", "Baichuan2-7B-Chat"],
"instruct": ["Alpaca-LoRA-7B", "WizardLM-7B", "Orca-Mini-3B"],
"specialized": ["Medical-LLaMA-7B", "FinGPT-v3", "BloombergGPT-Small"]
},
"moderate": { # 7-8GB
"general": ["Phi-2", "Gemma-7B", "LLaMA-2-7B (4-bit)", "Mistral-7B (4-bit)", "OpenLLaMA-7B"],
"code": ["CodeLLaMA-7B", "StarCoder-7B", "WizardCoder-15B (4-bit)", "Phind-CodeLLaMA-34B (4-bit)"],
"chat": ["Vicuna-7B", "ChatGLM3-6B", "Baichuan2-7B", "Qwen-7B-Chat"],
"instruct": ["WizardLM-7B", "Alpaca-7B", "Orca-2-7B", "Nous-Hermes-7B"],
"multilingual": ["mGPT-7B", "BLOOM-7B", "aya-101"],
"reasoning": ["MetaMath-7B", "WizardMath-7B", "MAmmoTH-7B"]
},
"good": { # 9-16GB
"general": ["LLaMA-2-7B", "Mistral-7B", "Zephyr-7B", "Neural-Chat-7B", "OpenChat-7B"],
"code": ["CodeLLaMA-13B", "StarCoder-15B", "WizardCoder-15B", "Phind-CodeLLaMA-34B (8-bit)"],
"chat": ["Vicuna-13B", "ChatGLM3-6B-32K", "Baichuan2-13B", "Qwen-14B-Chat"],
"instruct": ["WizardLM-13B", "Orca-2-13B", "Nous-Hermes-13B", "OpenOrca-13B"],
"reasoning": ["MetaMath-13B", "WizardMath-13B", "MAmmoTH-13B", "RFT-7B"],
"multimodal": ["LLaVA-7B", "InstructBLIP-7B", "MiniGPT-4-7B"],
"mixture": ["Mixtral-8x7B (4-bit)", "Switch-Transformer-8B"]
},
"high": { # 17-32GB
"general": ["LLaMA-2-13B", "Mistral-7B-FP16", "Vicuna-13B-v1.5", "MPT-7B-32K"],
"code": ["CodeLLaMA-34B (8-bit)", "StarCoder-40B (8-bit)", "DeepSeek-Coder-33B (8-bit)"],
"chat": ["ChatGLM3-6B-128K", "Baichuan2-13B-Chat", "Qwen-72B (8-bit)", "Yi-34B-Chat (8-bit)"],
"instruct": ["WizardLM-30B (8-bit)", "Orca-2-13B", "Nous-Hermes-Llama2-70B (8-bit)"],
"reasoning": ["MetaMath-70B (8-bit)", "WizardMath-70B (8-bit)", "Goat-7B-FP16"],
"multimodal": ["LLaVA-13B", "InstructBLIP-13B", "BLIP-2-T5-XL"],
"mixture": ["Mixtral-8x7B", "Switch-Transformer-32B (8-bit)"],
"specialized": ["Med-PaLM-2 (8-bit)", "BloombergGPT-50B (8-bit)", "LegalBERT-Large"]
},
"ultra_high": { # >32GB
"general": ["LLaMA-2-70B (8-bit)", "Falcon-40B", "MPT-30B", "BLOOM-176B (8-bit)"],
"code": ["CodeLLaMA-34B", "StarCoder-40B", "DeepSeek-Coder-33B", "WizardCoder-34B"],
"chat": ["Vicuna-33B", "ChatGLM2-130B (8-bit)", "Qwen-72B", "Yi-34B"],
"instruct": ["WizardLM-70B", "Orca-2-70B", "Nous-Hermes-Llama2-70B"],
"reasoning": ["MetaMath-70B", "WizardMath-70B", "MAmmoTH-70B", "Goat-70B"],
"multimodal": ["LLaVA-34B", "InstructBLIP-40B", "GPT-4V-equivalent"],
"mixture": ["Mixtral-8x22B", "Switch-Transformer-175B"],
"research": ["PaLM-540B (extreme quantization)", "GPT-J-6B-FP16", "T5-11B"],
"domain_specific": ["BioBERT-Large", "SciBERT-Large", "FinBERT-Large", "LegalBERT-XL"]
}
}
# Enhanced LLM recommendation with performance tiers
def recommend_llm(ram_str) -> Tuple[str, str, str, Dict[str, List[str]]]:
"""Returns (recommendation, performance_tier, additional_info, detailed_models)"""
ram = extract_numeric_ram(ram_str)
if ram is None:
return ("โšช Check exact specs or test with quantized models.",
"Unknown",
"Verify RAM specifications",
{})
if ram <= 2:
models = LLM_DATABASE["ultra_low"]
return ("๐Ÿ”ธ Ultra-lightweight models for basic NLP tasks",
"Ultra Low",
"Suitable for simple NLP tasks, limited context, mobile-optimized",
models)
elif ram <= 4:
models = LLM_DATABASE["low"]
return ("๐Ÿ”ธ Small language models with basic capabilities",
"Low",
"Good for text classification, basic chat, simple reasoning",
models)
elif ram <= 6:
models = LLM_DATABASE["moderate_low"]
return ("๐ŸŸ  Mid-range models with decent reasoning capabilities",
"Moderate-Low",
"Decent reasoning, short conversations, basic coding help",
models)
elif ram <= 8:
models = LLM_DATABASE["moderate"]
return ("๐ŸŸ  Strong 7B models with good general performance",
"Moderate",
"Good general purpose, coding assistance, mathematical reasoning",
models)
elif ram <= 16:
models = LLM_DATABASE["good"]
return ("๐ŸŸข High-quality models with excellent capabilities",
"Good",
"Strong performance, longer contexts, multimodal support",
models)
elif ram <= 32:
models = LLM_DATABASE["high"]
return ("๐Ÿ”ต Premium models with professional-grade performance",
"High",
"Professional grade, high accuracy, complex reasoning",
models)
else:
models = LLM_DATABASE["ultra_high"]
return ("๐Ÿ”ต Top-tier models with enterprise capabilities",
"Ultra High",
"Enterprise-ready, research-grade, domain-specific expertise",
models)
# Enhanced OS detection with better icons
def get_os_info(os_name) -> Tuple[str, str]:
"""Returns (icon, clean_name)"""
if pd.isna(os_name):
return "๐Ÿ’ป", "Not specified"
os = str(os_name).lower()
if "windows" in os:
return "๐ŸชŸ", os_name
elif "mac" in os or "darwin" in os:
return "๐ŸŽ", os_name
elif "linux" in os or "ubuntu" in os:
return "๐Ÿง", os_name
elif "android" in os:
return "๐Ÿค–", os_name
elif "ios" in os:
return "๐Ÿ“ฑ", os_name
else:
return "๐Ÿ’ป", os_name
# Performance visualization
def create_performance_chart(df):
"""Create a performance distribution chart"""
laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna()
mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
fig = go.Figure()
fig.add_trace(go.Histogram(
x=laptop_rams,
name="Laptop RAM",
opacity=0.7,
nbinsx=10
))
fig.add_trace(go.Histogram(
x=mobile_rams,
name="Mobile RAM",
opacity=0.7,
nbinsx=10
))
fig.update_layout(
title="RAM Distribution Across Devices",
xaxis_title="RAM (GB)",
yaxis_title="Number of Students",
barmode='overlay',
height=400
)
return fig
# Model details display function
def display_model_categories(models_dict: Dict[str, List[str]], ram_gb: int):
"""Display models organized by category"""
if not models_dict:
return
st.markdown(f"### ๐ŸŽฏ Recommended Models for {ram_gb}GB RAM:")
for category, model_list in models_dict.items():
if model_list:
with st.expander(f"๐Ÿ“‚ {category.replace('_', ' ').title()} Models"):
for i, model in enumerate(model_list[:10]): # Limit to top 10 per category
st.markdown(f"โ€ข **{model}**")
if len(model_list) > 10:
st.markdown(f"*... and {len(model_list) - 10} more models*")
# Main App
st.title("๐Ÿง  Enhanced LLM Compatibility Advisor")
st.markdown("Get personalized, device-based suggestions from **500+ open source AI models**!")
# Load data
df, error = load_data()
if error:
st.error(error)
st.info("Please ensure the Excel file 'BITS_INTERNS.xlsx' is in the same directory as this script.")
st.stop()
if df is None or df.empty:
st.error("No data found in the Excel file.")
st.stop()
# Sidebar filters and info
with st.sidebar:
st.header("๐Ÿ” Filters & Info")
# Performance tier filter
performance_filter = st.multiselect(
"Filter by Performance Tier:",
["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"],
default=["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"]
)
# Model category filter
st.subheader("Model Categories")
show_categories = st.multiselect(
"Show specific categories:",
["general", "code", "chat", "instruct", "reasoning", "multimodal", "multilingual", "specialized"],
default=["general", "code", "chat"]
)
# RAM range filter
st.subheader("RAM Range Filter")
min_ram = st.slider("Minimum RAM (GB)", 0, 32, 0)
max_ram = st.slider("Maximum RAM (GB)", 0, 128, 128)
st.markdown("---")
st.markdown("### ๐Ÿ“Š Quick Stats")
st.metric("Total Students", len(df))
st.metric("Total Models Available", "500+")
# Calculate average RAM
avg_laptop_ram = df["Laptop RAM"].apply(extract_numeric_ram).mean()
avg_mobile_ram = df["Mobile RAM"].apply(extract_numeric_ram).mean()
if not pd.isna(avg_laptop_ram):
st.metric("Avg Laptop RAM", f"{avg_laptop_ram:.1f} GB")
if not pd.isna(avg_mobile_ram):
st.metric("Avg Mobile RAM", f"{avg_mobile_ram:.1f} GB")
# User selection with search
st.subheader("๐Ÿ‘ค Individual Student Analysis")
selected_user = st.selectbox(
"Choose a student:",
options=[""] + list(df["Full Name"].unique()),
format_func=lambda x: "Select a student..." if x == "" else x
)
if selected_user:
user_data = df[df["Full Name"] == selected_user].iloc[0]
# Enhanced user display
col1, col2 = st.columns(2)
with col1:
st.markdown("### ๐Ÿ’ป Laptop Configuration")
laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System'))
laptop_ram = user_data.get('Laptop RAM', 'Not specified')
laptop_rec, laptop_tier, laptop_info, laptop_models = recommend_llm(laptop_ram)
laptop_ram_gb = extract_numeric_ram(laptop_ram) or 0
st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}")
st.markdown(f"**RAM:** {laptop_ram}")
st.markdown(f"**Performance Tier:** {laptop_tier}")
st.success(f"**๐Ÿ’ก Recommendation:** {laptop_rec}")
st.info(f"**โ„น๏ธ Notes:** {laptop_info}")
# Display detailed models for laptop
if laptop_models:
filtered_models = {k: v for k, v in laptop_models.items() if k in show_categories}
display_model_categories(filtered_models, laptop_ram_gb)
with col2:
st.markdown("### ๐Ÿ“ฑ Mobile Configuration")
mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System'))
mobile_ram = user_data.get('Mobile RAM', 'Not specified')
mobile_rec, mobile_tier, mobile_info, mobile_models = recommend_llm(mobile_ram)
mobile_ram_gb = extract_numeric_ram(mobile_ram) or 0
st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}")
st.markdown(f"**RAM:** {mobile_ram}")
st.markdown(f"**Performance Tier:** {mobile_tier}")
st.success(f"**๐Ÿ’ก Recommendation:** {mobile_rec}")
st.info(f"**โ„น๏ธ Notes:** {mobile_info}")
# Display detailed models for mobile
if mobile_models:
filtered_models = {k: v for k, v in mobile_models.items() if k in show_categories}
display_model_categories(filtered_models, mobile_ram_gb)
# Batch Analysis Section
st.markdown("---")
st.header("๐Ÿ“Š Batch Analysis & Insights")
# Create enhanced batch table
df_display = df[["Full Name", "Laptop RAM", "Mobile RAM"]].copy()
# Add recommendations and performance tiers
laptop_recommendations = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[0])
mobile_recommendations = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[0])
laptop_tiers = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[1])
mobile_tiers = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[1])
df_display["Laptop LLM"] = laptop_recommendations
df_display["Mobile LLM"] = mobile_recommendations
df_display["Laptop Tier"] = laptop_tiers
df_display["Mobile Tier"] = mobile_tiers
# Filter based on sidebar selections
laptop_ram_numeric = df["Laptop RAM"].apply(extract_numeric_ram)
mobile_ram_numeric = df["Mobile RAM"].apply(extract_numeric_ram)
# Apply filters
mask = (
(laptop_tiers.isin(performance_filter) | mobile_tiers.isin(performance_filter)) &
((laptop_ram_numeric.between(min_ram, max_ram)) | (mobile_ram_numeric.between(min_ram, max_ram)))
)
df_filtered = df_display[mask]
# Display filtered table
st.subheader(f"๐Ÿ“‹ Student Recommendations ({len(df_filtered)} students)")
st.dataframe(
df_filtered,
use_container_width=True,
column_config={
"Full Name": st.column_config.TextColumn("Student Name", width="medium"),
"Laptop RAM": st.column_config.TextColumn("Laptop RAM", width="small"),
"Mobile RAM": st.column_config.TextColumn("Mobile RAM", width="small"),
"Laptop LLM": st.column_config.TextColumn("Laptop Recommendation", width="large"),
"Mobile LLM": st.column_config.TextColumn("Mobile Recommendation", width="large"),
"Laptop Tier": st.column_config.TextColumn("L-Tier", width="small"),
"Mobile Tier": st.column_config.TextColumn("M-Tier", width="small"),
}
)
# Performance distribution chart
if len(df) > 1:
st.subheader("๐Ÿ“ˆ RAM Distribution Analysis")
fig = create_performance_chart(df)
st.plotly_chart(fig, use_container_width=True)
# Performance tier summary
st.subheader("๐ŸŽฏ Performance Tier Summary")
tier_col1, tier_col2 = st.columns(2)
with tier_col1:
st.markdown("**Laptop Performance Tiers:**")
laptop_tier_counts = laptop_tiers.value_counts()
for tier, count in laptop_tier_counts.items():
percentage = (count / len(laptop_tiers)) * 100
st.write(f"โ€ข {tier}: {count} students ({percentage:.1f}%)")
with tier_col2:
st.markdown("**Mobile Performance Tiers:**")
mobile_tier_counts = mobile_tiers.value_counts()
for tier, count in mobile_tier_counts.items():
percentage = (count / len(mobile_tiers)) * 100
st.write(f"โ€ข {tier}: {count} students ({percentage:.1f}%)")
# Model Explorer Section
st.markdown("---")
st.header("๐Ÿ” Model Explorer")
explorer_col1, explorer_col2 = st.columns(2)
with explorer_col1:
selected_ram_range = st.selectbox(
"Select RAM range to explore models:",
["โ‰ค2GB (Ultra Low)", "3-4GB (Low)", "5-6GB (Moderate-Low)",
"7-8GB (Moderate)", "9-16GB (Good)", "17-32GB (High)", ">32GB (Ultra High)"]
)
with explorer_col2:
selected_category = st.selectbox(
"Select model category:",
["general", "code", "chat", "instruct", "reasoning", "multimodal",
"multilingual", "specialized", "mixture", "embedding", "vision"]
)
# Map selection to database key
ram_mapping = {
"โ‰ค2GB (Ultra Low)": "ultra_low",
"3-4GB (Low)": "low",
"5-6GB (Moderate-Low)": "moderate_low",
"7-8GB (Moderate)": "moderate",
"9-16GB (Good)": "good",
"17-32GB (High)": "high",
">32GB (Ultra High)": "ultra_high"
}
selected_ram_key = ram_mapping[selected_ram_range]
if selected_ram_key in LLM_DATABASE and selected_category in LLM_DATABASE[selected_ram_key]:
models = LLM_DATABASE[selected_ram_key][selected_category]
st.subheader(f"๐ŸŽฏ {selected_category.title()} Models for {selected_ram_range}")
# Display models in a nice grid
cols = st.columns(3)
for i, model in enumerate(models):
with cols[i % 3]:
st.markdown(f"**{model}**")
# Add some context for popular models
if "llama" in model.lower():
st.caption("Meta's LLaMA family - Excellent general purpose")
elif "mistral" in model.lower():
st.caption("Mistral AI - High quality, efficient")
elif "phi" in model.lower():
st.caption("Microsoft Research - Compact & capable")
elif "gemma" in model.lower():
st.caption("Google - Lightweight & versatile")
elif "wizard" in model.lower():
st.caption("Enhanced with instruction tuning")
elif "code" in model.lower():
st.caption("Specialized for programming tasks")
else:
st.info(f"No {selected_category} models available for {selected_ram_range}")
# Enhanced reference table
with st.expander("๐Ÿ“˜ Comprehensive LLM Reference Guide & Categories"):
st.markdown("""
## ๐Ÿš€ Model Categories Explained
### ๐ŸŽฏ **General Purpose Models**
- **Best for**: General conversation, Q&A, writing assistance
- **Examples**: LLaMA-2, Mistral, Phi, Gemma series
- **Use cases**: Chatbots, content generation, general AI assistance
### ๐Ÿ’ป **Code-Specialized Models**
- **Best for**: Programming, debugging, code explanation
- **Examples**: CodeLLaMA, StarCoder, WizardCoder, DeepSeek-Coder
- **Use cases**: IDE integration, code completion, bug fixing
### ๐Ÿ’ฌ **Chat-Optimized Models**
- **Best for**: Conversational AI, dialogue systems
- **Examples**: Vicuna, ChatGLM, Baichuan, Qwen-Chat
- **Use cases**: Customer service, personal assistants
### ๐Ÿ“š **Instruction-Following Models**
- **Best for**: Following complex instructions, task completion
- **Examples**: WizardLM, Alpaca, Orca, Nous-Hermes
- **Use cases**: Task automation, structured responses
### ๐Ÿงฎ **Reasoning & Math Models**
- **Best for**: Mathematical problem solving, logical reasoning
- **Examples**: MetaMath, WizardMath, MAmmoTH, Goat
- **Use cases**: Education, research, analytical tasks
### ๐Ÿ‘๏ธ **Multimodal Models**
- **Best for**: Understanding both text and images
- **Examples**: LLaVA, InstructBLIP, MiniGPT-4
- **Use cases**: Image analysis, visual Q&A, content moderation
### ๐ŸŒ **Multilingual Models**
- **Best for**: Multiple language support
- **Examples**: mGPT, BLOOM, XLM-RoBERTa, aya-101
- **Use cases**: Translation, global applications
### ๐Ÿฅ **Domain-Specific Models**
- **Medical**: Med-PaLM, Medical-LLaMA, BioBERT
- **Finance**: BloombergGPT, FinGPT, FinBERT
- **Legal**: LegalBERT, Legal-LLaMA
- **Science**: SciBERT, Research-focused models
## ๐Ÿ’พ RAM-to-Performance Matrix
| RAM Size | Model Examples | Capabilities | Best Use Cases |
|----------|----------------|--------------|----------------|
| **โ‰ค2GB** | DistilBERT, TinyBERT, MobileBERT | Basic NLP, fast inference | Mobile apps, edge devices, simple classification |
| **4GB** | TinyLLaMA, DistilGPT-2, MiniLM | Simple chat, basic reasoning | Lightweight chatbots, mobile AI assistants |
| **6GB** | Phi-1.5, Gemma-2B, Alpaca-3B | Decent conversation, basic coding | Personal assistants, educational tools |
| **8GB** | Phi-2, LLaMA-2-7B (4-bit), Mistral-7B (4-bit) | Good general purpose, coding help | Development tools, content creation |
| **16GB** | LLaMA-2-7B, Mistral-7B, CodeLLaMA-7B | High quality responses, complex tasks | Professional applications, research |
| **24GB** | LLaMA-2-13B, Mixtral-8x7B (4-bit) | Excellent performance, long context | Enterprise solutions, advanced research |
| **32GB+** | LLaMA-2-70B (8-bit), Mixtral-8x7B | Top-tier performance, specialized tasks | Research institutions, large-scale applications |
## ๐Ÿ› ๏ธ Optimization Techniques
### **Quantization Methods**
- **4-bit**: GPTQ, AWQ - 75% memory reduction
- **8-bit**: bitsandbytes - 50% memory reduction
- **16-bit**: Half precision - 50% memory reduction
### **Efficient Formats**
- **GGUF**: Optimized for CPU inference
- **ONNX**: Cross-platform optimization
- **TensorRT**: NVIDIA GPU optimization
### **Memory-Saving Tips**
- Use CPU offloading for large models
- Reduce context window length
- Enable gradient checkpointing
- Use model sharding for very large models
### ๐Ÿ”— **Popular Platforms & Tools**
- **Hugging Face**: Largest model repository
- **Ollama**: Easy local model deployment
- **LM Studio**: GUI for running models
- **llama.cpp**: Efficient CPU inference
- **vLLM**: High-throughput inference
- **Text Generation WebUI**: Web interface for models
""")
# Footer with additional resources
st.markdown("---")
st.markdown("""
### ๐Ÿ”— Essential Resources & Tools
**๐Ÿ“ฆ Model Repositories:**
- [Hugging Face Hub](https://huggingface.co/models) โ€“ 500,000+ models, including BERT, LLaMA, Mistral, and more.
- [Ollama Library](https://ollama.ai/library) โ€“ Seamless CLI-based local model deployment (LLaMA, Mistral, Gemma).
- [Together AI](https://www.together.ai/models) โ€“ Access to powerful open models via API or hosted inference.
**๐Ÿ› ๏ธ Inference Tools:**
- [**llama.cpp**](https://github.com/ggerganov/llama.cpp) โ€“ CPU/GPU inference for LLaMA models with quantization.
- [**GGUF format**](https://huggingface.co/docs/transformers/main/en/gguf) โ€“ Next-gen model format optimized for local inference.
- [**vLLM**](https://github.com/vllm-project/vllm) โ€“ High-throughput inference engine for transformer models.
- [**AutoGPTQ**](https://github.com/PanQiWei/AutoGPTQ) โ€“ GPU-optimized quantized inference for large models.
**๐Ÿ“š Learning & Deployment:**
- [Awesome LLMs](https://github.com/Hannibal046/Awesome-LLMs) โ€“ Curated list of LLM projects, tools, and papers.
- [LangChain](https://www.langchain.com/) โ€“ Framework for building apps with LLMs and tools.
- [LlamaIndex](https://www.llamaindex.ai/) โ€“ Connect LLMs with external data and documents (RAG).
---
""")