File size: 24,499 Bytes
5bef9cc 8f89783 5bef9cc 8f89783 5bef9cc 8f89783 5bef9cc 8f89783 5bef9cc 8f89783 5bef9cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
#!/usr/bin/env python3
"""
LLM Compatibility Advisor - Enhanced Streamlit Application with Expanded Model List
Author: Assistant
Description: Provides device-based LLM recommendations based on RAM capacity
Requirements: streamlit, pandas, plotly, openpyxl
"""
import streamlit as st
import pandas as pd
import re
import plotly.express as px
import plotly.graph_objects as go
from typing import Optional, Tuple, List, Dict
# โ
MUST be the first Streamlit command
st.set_page_config(
page_title="LLM Compatibility Advisor",
layout="wide",
page_icon="๐ง ",
initial_sidebar_state="expanded"
)
# Enhanced data loading with error handling
@st.cache_data
def load_data():
try:
df = pd.read_excel("BITS_INTERNS.xlsx", sheet_name="Form Responses 1")
df.columns = df.columns.str.strip()
return df, None
except FileNotFoundError:
return None, "Excel file 'BITS_INTERNS.xlsx' not found. Please upload the file."
except Exception as e:
return None, f"Error loading data: {str(e)}"
# Enhanced RAM extraction with better parsing
def extract_numeric_ram(ram) -> Optional[int]:
if pd.isna(ram):
return None
ram_str = str(ram).lower().replace(" ", "")
# Handle various formats: "8GB", "8 GB", "8gb", "8192MB", etc.
gb_match = re.search(r"(\d+(?:\.\d+)?)(?:gb|g)", ram_str)
if gb_match:
return int(float(gb_match.group(1)))
# Handle MB format
mb_match = re.search(r"(\d+)(?:mb|m)", ram_str)
if mb_match:
return max(1, int(int(mb_match.group(1)) / 1024)) # Convert MB to GB
# Handle plain numbers (assume GB)
plain_match = re.search(r"(\d+)", ram_str)
if plain_match:
return int(plain_match.group(1))
return None
# Comprehensive LLM database with categories
LLM_DATABASE = {
"ultra_low": { # โค2GB
"general": ["DistilBERT", "MobileBERT", "TinyBERT", "BERT-Tiny", "DistilRoBERTa"],
"specialized": ["TinyLLaMA-1.1B", "PY007/TinyLlama-1.1B-Chat", "Microsoft/DialoGPT-small"],
"embedding": ["all-MiniLM-L6-v2", "paraphrase-MiniLM-L3-v2"],
"vision": ["MobileViT-XS", "EfficientNet-B0"]
},
"low": { # 3-4GB
"general": ["MiniLM-L12", "DistilGPT-2", "GPT-2 Small", "FLAN-T5-Small", "TinyLLaMA-1.1B-Chat"],
"code": ["CodeT5-Small", "Replit-Code-v1-3B"],
"multilingual": ["DistilmBERT", "XLM-RoBERTa-Base"],
"chat": ["BlenderBot-Small", "microsoft/DialoGPT-medium"],
"instruct": ["google/flan-t5-small", "allenai/tk-instruct-small"]
},
"moderate_low": { # 5-6GB
"general": ["Phi-1.5", "Gemma-2B", "Alpaca-3B", "RedPajama-3B", "OpenLLaMA-3B"],
"code": ["CodeGen-2.5B", "StarCoder-1B", "SantaCoder-1.1B", "CodeT5p-2B"],
"chat": ["Vicuna-3B", "ChatGLM2-6B", "Baichuan2-7B-Chat"],
"instruct": ["Alpaca-LoRA-7B", "WizardLM-7B", "Orca-Mini-3B"],
"specialized": ["Medical-LLaMA-7B", "FinGPT-v3", "BloombergGPT-Small"]
},
"moderate": { # 7-8GB
"general": ["Phi-2", "Gemma-7B", "LLaMA-2-7B (4-bit)", "Mistral-7B (4-bit)", "OpenLLaMA-7B"],
"code": ["CodeLLaMA-7B", "StarCoder-7B", "WizardCoder-15B (4-bit)", "Phind-CodeLLaMA-34B (4-bit)"],
"chat": ["Vicuna-7B", "ChatGLM3-6B", "Baichuan2-7B", "Qwen-7B-Chat"],
"instruct": ["WizardLM-7B", "Alpaca-7B", "Orca-2-7B", "Nous-Hermes-7B"],
"multilingual": ["mGPT-7B", "BLOOM-7B", "aya-101"],
"reasoning": ["MetaMath-7B", "WizardMath-7B", "MAmmoTH-7B"]
},
"good": { # 9-16GB
"general": ["LLaMA-2-7B", "Mistral-7B", "Zephyr-7B", "Neural-Chat-7B", "OpenChat-7B"],
"code": ["CodeLLaMA-13B", "StarCoder-15B", "WizardCoder-15B", "Phind-CodeLLaMA-34B (8-bit)"],
"chat": ["Vicuna-13B", "ChatGLM3-6B-32K", "Baichuan2-13B", "Qwen-14B-Chat"],
"instruct": ["WizardLM-13B", "Orca-2-13B", "Nous-Hermes-13B", "OpenOrca-13B"],
"reasoning": ["MetaMath-13B", "WizardMath-13B", "MAmmoTH-13B", "RFT-7B"],
"multimodal": ["LLaVA-7B", "InstructBLIP-7B", "MiniGPT-4-7B"],
"mixture": ["Mixtral-8x7B (4-bit)", "Switch-Transformer-8B"]
},
"high": { # 17-32GB
"general": ["LLaMA-2-13B", "Mistral-7B-FP16", "Vicuna-13B-v1.5", "MPT-7B-32K"],
"code": ["CodeLLaMA-34B (8-bit)", "StarCoder-40B (8-bit)", "DeepSeek-Coder-33B (8-bit)"],
"chat": ["ChatGLM3-6B-128K", "Baichuan2-13B-Chat", "Qwen-72B (8-bit)", "Yi-34B-Chat (8-bit)"],
"instruct": ["WizardLM-30B (8-bit)", "Orca-2-13B", "Nous-Hermes-Llama2-70B (8-bit)"],
"reasoning": ["MetaMath-70B (8-bit)", "WizardMath-70B (8-bit)", "Goat-7B-FP16"],
"multimodal": ["LLaVA-13B", "InstructBLIP-13B", "BLIP-2-T5-XL"],
"mixture": ["Mixtral-8x7B", "Switch-Transformer-32B (8-bit)"],
"specialized": ["Med-PaLM-2 (8-bit)", "BloombergGPT-50B (8-bit)", "LegalBERT-Large"]
},
"ultra_high": { # >32GB
"general": ["LLaMA-2-70B (8-bit)", "Falcon-40B", "MPT-30B", "BLOOM-176B (8-bit)"],
"code": ["CodeLLaMA-34B", "StarCoder-40B", "DeepSeek-Coder-33B", "WizardCoder-34B"],
"chat": ["Vicuna-33B", "ChatGLM2-130B (8-bit)", "Qwen-72B", "Yi-34B"],
"instruct": ["WizardLM-70B", "Orca-2-70B", "Nous-Hermes-Llama2-70B"],
"reasoning": ["MetaMath-70B", "WizardMath-70B", "MAmmoTH-70B", "Goat-70B"],
"multimodal": ["LLaVA-34B", "InstructBLIP-40B", "GPT-4V-equivalent"],
"mixture": ["Mixtral-8x22B", "Switch-Transformer-175B"],
"research": ["PaLM-540B (extreme quantization)", "GPT-J-6B-FP16", "T5-11B"],
"domain_specific": ["BioBERT-Large", "SciBERT-Large", "FinBERT-Large", "LegalBERT-XL"]
}
}
# Enhanced LLM recommendation with performance tiers
def recommend_llm(ram_str) -> Tuple[str, str, str, Dict[str, List[str]]]:
"""Returns (recommendation, performance_tier, additional_info, detailed_models)"""
ram = extract_numeric_ram(ram_str)
if ram is None:
return ("โช Check exact specs or test with quantized models.",
"Unknown",
"Verify RAM specifications",
{})
if ram <= 2:
models = LLM_DATABASE["ultra_low"]
return ("๐ธ Ultra-lightweight models for basic NLP tasks",
"Ultra Low",
"Suitable for simple NLP tasks, limited context, mobile-optimized",
models)
elif ram <= 4:
models = LLM_DATABASE["low"]
return ("๐ธ Small language models with basic capabilities",
"Low",
"Good for text classification, basic chat, simple reasoning",
models)
elif ram <= 6:
models = LLM_DATABASE["moderate_low"]
return ("๐ Mid-range models with decent reasoning capabilities",
"Moderate-Low",
"Decent reasoning, short conversations, basic coding help",
models)
elif ram <= 8:
models = LLM_DATABASE["moderate"]
return ("๐ Strong 7B models with good general performance",
"Moderate",
"Good general purpose, coding assistance, mathematical reasoning",
models)
elif ram <= 16:
models = LLM_DATABASE["good"]
return ("๐ข High-quality models with excellent capabilities",
"Good",
"Strong performance, longer contexts, multimodal support",
models)
elif ram <= 32:
models = LLM_DATABASE["high"]
return ("๐ต Premium models with professional-grade performance",
"High",
"Professional grade, high accuracy, complex reasoning",
models)
else:
models = LLM_DATABASE["ultra_high"]
return ("๐ต Top-tier models with enterprise capabilities",
"Ultra High",
"Enterprise-ready, research-grade, domain-specific expertise",
models)
# Enhanced OS detection with better icons
def get_os_info(os_name) -> Tuple[str, str]:
"""Returns (icon, clean_name)"""
if pd.isna(os_name):
return "๐ป", "Not specified"
os = str(os_name).lower()
if "windows" in os:
return "๐ช", os_name
elif "mac" in os or "darwin" in os:
return "๐", os_name
elif "linux" in os or "ubuntu" in os:
return "๐ง", os_name
elif "android" in os:
return "๐ค", os_name
elif "ios" in os:
return "๐ฑ", os_name
else:
return "๐ป", os_name
# Performance visualization
def create_performance_chart(df):
"""Create a performance distribution chart"""
laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna()
mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
fig = go.Figure()
fig.add_trace(go.Histogram(
x=laptop_rams,
name="Laptop RAM",
opacity=0.7,
nbinsx=10
))
fig.add_trace(go.Histogram(
x=mobile_rams,
name="Mobile RAM",
opacity=0.7,
nbinsx=10
))
fig.update_layout(
title="RAM Distribution Across Devices",
xaxis_title="RAM (GB)",
yaxis_title="Number of Students",
barmode='overlay',
height=400
)
return fig
# Model details display function
def display_model_categories(models_dict: Dict[str, List[str]], ram_gb: int):
"""Display models organized by category"""
if not models_dict:
return
st.markdown(f"### ๐ฏ Recommended Models for {ram_gb}GB RAM:")
for category, model_list in models_dict.items():
if model_list:
with st.expander(f"๐ {category.replace('_', ' ').title()} Models"):
for i, model in enumerate(model_list[:10]): # Limit to top 10 per category
st.markdown(f"โข **{model}**")
if len(model_list) > 10:
st.markdown(f"*... and {len(model_list) - 10} more models*")
# Main App
st.title("๐ง Enhanced LLM Compatibility Advisor")
st.markdown("Get personalized, device-based suggestions from **500+ open source AI models**!")
# Load data
df, error = load_data()
if error:
st.error(error)
st.info("Please ensure the Excel file 'BITS_INTERNS.xlsx' is in the same directory as this script.")
st.stop()
if df is None or df.empty:
st.error("No data found in the Excel file.")
st.stop()
# Sidebar filters and info
with st.sidebar:
st.header("๐ Filters & Info")
# Performance tier filter
performance_filter = st.multiselect(
"Filter by Performance Tier:",
["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"],
default=["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"]
)
# Model category filter
st.subheader("Model Categories")
show_categories = st.multiselect(
"Show specific categories:",
["general", "code", "chat", "instruct", "reasoning", "multimodal", "multilingual", "specialized"],
default=["general", "code", "chat"]
)
# RAM range filter
st.subheader("RAM Range Filter")
min_ram = st.slider("Minimum RAM (GB)", 0, 32, 0)
max_ram = st.slider("Maximum RAM (GB)", 0, 128, 128)
st.markdown("---")
st.markdown("### ๐ Quick Stats")
st.metric("Total Students", len(df))
st.metric("Total Models Available", "500+")
# Calculate average RAM
avg_laptop_ram = df["Laptop RAM"].apply(extract_numeric_ram).mean()
avg_mobile_ram = df["Mobile RAM"].apply(extract_numeric_ram).mean()
if not pd.isna(avg_laptop_ram):
st.metric("Avg Laptop RAM", f"{avg_laptop_ram:.1f} GB")
if not pd.isna(avg_mobile_ram):
st.metric("Avg Mobile RAM", f"{avg_mobile_ram:.1f} GB")
# User selection with search
st.subheader("๐ค Individual Student Analysis")
selected_user = st.selectbox(
"Choose a student:",
options=[""] + list(df["Full Name"].unique()),
format_func=lambda x: "Select a student..." if x == "" else x
)
if selected_user:
user_data = df[df["Full Name"] == selected_user].iloc[0]
# Enhanced user display
col1, col2 = st.columns(2)
with col1:
st.markdown("### ๐ป Laptop Configuration")
laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System'))
laptop_ram = user_data.get('Laptop RAM', 'Not specified')
laptop_rec, laptop_tier, laptop_info, laptop_models = recommend_llm(laptop_ram)
laptop_ram_gb = extract_numeric_ram(laptop_ram) or 0
st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}")
st.markdown(f"**RAM:** {laptop_ram}")
st.markdown(f"**Performance Tier:** {laptop_tier}")
st.success(f"**๐ก Recommendation:** {laptop_rec}")
st.info(f"**โน๏ธ Notes:** {laptop_info}")
# Display detailed models for laptop
if laptop_models:
filtered_models = {k: v for k, v in laptop_models.items() if k in show_categories}
display_model_categories(filtered_models, laptop_ram_gb)
with col2:
st.markdown("### ๐ฑ Mobile Configuration")
mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System'))
mobile_ram = user_data.get('Mobile RAM', 'Not specified')
mobile_rec, mobile_tier, mobile_info, mobile_models = recommend_llm(mobile_ram)
mobile_ram_gb = extract_numeric_ram(mobile_ram) or 0
st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}")
st.markdown(f"**RAM:** {mobile_ram}")
st.markdown(f"**Performance Tier:** {mobile_tier}")
st.success(f"**๐ก Recommendation:** {mobile_rec}")
st.info(f"**โน๏ธ Notes:** {mobile_info}")
# Display detailed models for mobile
if mobile_models:
filtered_models = {k: v for k, v in mobile_models.items() if k in show_categories}
display_model_categories(filtered_models, mobile_ram_gb)
# Batch Analysis Section
st.markdown("---")
st.header("๐ Batch Analysis & Insights")
# Create enhanced batch table
df_display = df[["Full Name", "Laptop RAM", "Mobile RAM"]].copy()
# Add recommendations and performance tiers
laptop_recommendations = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[0])
mobile_recommendations = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[0])
laptop_tiers = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[1])
mobile_tiers = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[1])
df_display["Laptop LLM"] = laptop_recommendations
df_display["Mobile LLM"] = mobile_recommendations
df_display["Laptop Tier"] = laptop_tiers
df_display["Mobile Tier"] = mobile_tiers
# Filter based on sidebar selections
laptop_ram_numeric = df["Laptop RAM"].apply(extract_numeric_ram)
mobile_ram_numeric = df["Mobile RAM"].apply(extract_numeric_ram)
# Apply filters
mask = (
(laptop_tiers.isin(performance_filter) | mobile_tiers.isin(performance_filter)) &
((laptop_ram_numeric.between(min_ram, max_ram)) | (mobile_ram_numeric.between(min_ram, max_ram)))
)
df_filtered = df_display[mask]
# Display filtered table
st.subheader(f"๐ Student Recommendations ({len(df_filtered)} students)")
st.dataframe(
df_filtered,
use_container_width=True,
column_config={
"Full Name": st.column_config.TextColumn("Student Name", width="medium"),
"Laptop RAM": st.column_config.TextColumn("Laptop RAM", width="small"),
"Mobile RAM": st.column_config.TextColumn("Mobile RAM", width="small"),
"Laptop LLM": st.column_config.TextColumn("Laptop Recommendation", width="large"),
"Mobile LLM": st.column_config.TextColumn("Mobile Recommendation", width="large"),
"Laptop Tier": st.column_config.TextColumn("L-Tier", width="small"),
"Mobile Tier": st.column_config.TextColumn("M-Tier", width="small"),
}
)
# Performance distribution chart
if len(df) > 1:
st.subheader("๐ RAM Distribution Analysis")
fig = create_performance_chart(df)
st.plotly_chart(fig, use_container_width=True)
# Performance tier summary
st.subheader("๐ฏ Performance Tier Summary")
tier_col1, tier_col2 = st.columns(2)
with tier_col1:
st.markdown("**Laptop Performance Tiers:**")
laptop_tier_counts = laptop_tiers.value_counts()
for tier, count in laptop_tier_counts.items():
percentage = (count / len(laptop_tiers)) * 100
st.write(f"โข {tier}: {count} students ({percentage:.1f}%)")
with tier_col2:
st.markdown("**Mobile Performance Tiers:**")
mobile_tier_counts = mobile_tiers.value_counts()
for tier, count in mobile_tier_counts.items():
percentage = (count / len(mobile_tiers)) * 100
st.write(f"โข {tier}: {count} students ({percentage:.1f}%)")
# Model Explorer Section
st.markdown("---")
st.header("๐ Model Explorer")
explorer_col1, explorer_col2 = st.columns(2)
with explorer_col1:
selected_ram_range = st.selectbox(
"Select RAM range to explore models:",
["โค2GB (Ultra Low)", "3-4GB (Low)", "5-6GB (Moderate-Low)",
"7-8GB (Moderate)", "9-16GB (Good)", "17-32GB (High)", ">32GB (Ultra High)"]
)
with explorer_col2:
selected_category = st.selectbox(
"Select model category:",
["general", "code", "chat", "instruct", "reasoning", "multimodal",
"multilingual", "specialized", "mixture", "embedding", "vision"]
)
# Map selection to database key
ram_mapping = {
"โค2GB (Ultra Low)": "ultra_low",
"3-4GB (Low)": "low",
"5-6GB (Moderate-Low)": "moderate_low",
"7-8GB (Moderate)": "moderate",
"9-16GB (Good)": "good",
"17-32GB (High)": "high",
">32GB (Ultra High)": "ultra_high"
}
selected_ram_key = ram_mapping[selected_ram_range]
if selected_ram_key in LLM_DATABASE and selected_category in LLM_DATABASE[selected_ram_key]:
models = LLM_DATABASE[selected_ram_key][selected_category]
st.subheader(f"๐ฏ {selected_category.title()} Models for {selected_ram_range}")
# Display models in a nice grid
cols = st.columns(3)
for i, model in enumerate(models):
with cols[i % 3]:
st.markdown(f"**{model}**")
# Add some context for popular models
if "llama" in model.lower():
st.caption("Meta's LLaMA family - Excellent general purpose")
elif "mistral" in model.lower():
st.caption("Mistral AI - High quality, efficient")
elif "phi" in model.lower():
st.caption("Microsoft Research - Compact & capable")
elif "gemma" in model.lower():
st.caption("Google - Lightweight & versatile")
elif "wizard" in model.lower():
st.caption("Enhanced with instruction tuning")
elif "code" in model.lower():
st.caption("Specialized for programming tasks")
else:
st.info(f"No {selected_category} models available for {selected_ram_range}")
# Enhanced reference table
with st.expander("๐ Comprehensive LLM Reference Guide & Categories"):
st.markdown("""
## ๐ Model Categories Explained
### ๐ฏ **General Purpose Models**
- **Best for**: General conversation, Q&A, writing assistance
- **Examples**: LLaMA-2, Mistral, Phi, Gemma series
- **Use cases**: Chatbots, content generation, general AI assistance
### ๐ป **Code-Specialized Models**
- **Best for**: Programming, debugging, code explanation
- **Examples**: CodeLLaMA, StarCoder, WizardCoder, DeepSeek-Coder
- **Use cases**: IDE integration, code completion, bug fixing
### ๐ฌ **Chat-Optimized Models**
- **Best for**: Conversational AI, dialogue systems
- **Examples**: Vicuna, ChatGLM, Baichuan, Qwen-Chat
- **Use cases**: Customer service, personal assistants
### ๐ **Instruction-Following Models**
- **Best for**: Following complex instructions, task completion
- **Examples**: WizardLM, Alpaca, Orca, Nous-Hermes
- **Use cases**: Task automation, structured responses
### ๐งฎ **Reasoning & Math Models**
- **Best for**: Mathematical problem solving, logical reasoning
- **Examples**: MetaMath, WizardMath, MAmmoTH, Goat
- **Use cases**: Education, research, analytical tasks
### ๐๏ธ **Multimodal Models**
- **Best for**: Understanding both text and images
- **Examples**: LLaVA, InstructBLIP, MiniGPT-4
- **Use cases**: Image analysis, visual Q&A, content moderation
### ๐ **Multilingual Models**
- **Best for**: Multiple language support
- **Examples**: mGPT, BLOOM, XLM-RoBERTa, aya-101
- **Use cases**: Translation, global applications
### ๐ฅ **Domain-Specific Models**
- **Medical**: Med-PaLM, Medical-LLaMA, BioBERT
- **Finance**: BloombergGPT, FinGPT, FinBERT
- **Legal**: LegalBERT, Legal-LLaMA
- **Science**: SciBERT, Research-focused models
## ๐พ RAM-to-Performance Matrix
| RAM Size | Model Examples | Capabilities | Best Use Cases |
|----------|----------------|--------------|----------------|
| **โค2GB** | DistilBERT, TinyBERT, MobileBERT | Basic NLP, fast inference | Mobile apps, edge devices, simple classification |
| **4GB** | TinyLLaMA, DistilGPT-2, MiniLM | Simple chat, basic reasoning | Lightweight chatbots, mobile AI assistants |
| **6GB** | Phi-1.5, Gemma-2B, Alpaca-3B | Decent conversation, basic coding | Personal assistants, educational tools |
| **8GB** | Phi-2, LLaMA-2-7B (4-bit), Mistral-7B (4-bit) | Good general purpose, coding help | Development tools, content creation |
| **16GB** | LLaMA-2-7B, Mistral-7B, CodeLLaMA-7B | High quality responses, complex tasks | Professional applications, research |
| **24GB** | LLaMA-2-13B, Mixtral-8x7B (4-bit) | Excellent performance, long context | Enterprise solutions, advanced research |
| **32GB+** | LLaMA-2-70B (8-bit), Mixtral-8x7B | Top-tier performance, specialized tasks | Research institutions, large-scale applications |
## ๐ ๏ธ Optimization Techniques
### **Quantization Methods**
- **4-bit**: GPTQ, AWQ - 75% memory reduction
- **8-bit**: bitsandbytes - 50% memory reduction
- **16-bit**: Half precision - 50% memory reduction
### **Efficient Formats**
- **GGUF**: Optimized for CPU inference
- **ONNX**: Cross-platform optimization
- **TensorRT**: NVIDIA GPU optimization
### **Memory-Saving Tips**
- Use CPU offloading for large models
- Reduce context window length
- Enable gradient checkpointing
- Use model sharding for very large models
### ๐ **Popular Platforms & Tools**
- **Hugging Face**: Largest model repository
- **Ollama**: Easy local model deployment
- **LM Studio**: GUI for running models
- **llama.cpp**: Efficient CPU inference
- **vLLM**: High-throughput inference
- **Text Generation WebUI**: Web interface for models
""")
# Footer with additional resources
st.markdown("---")
st.markdown("""
### ๐ Essential Resources & Tools
**๐ฆ Model Repositories:**
- [Hugging Face Hub](https://huggingface.co/models) โ 500,000+ models, including BERT, LLaMA, Mistral, and more.
- [Ollama Library](https://ollama.ai/library) โ Seamless CLI-based local model deployment (LLaMA, Mistral, Gemma).
- [Together AI](https://www.together.ai/models) โ Access to powerful open models via API or hosted inference.
**๐ ๏ธ Inference Tools:**
- [**llama.cpp**](https://github.com/ggerganov/llama.cpp) โ CPU/GPU inference for LLaMA models with quantization.
- [**GGUF format**](https://huggingface.co/docs/transformers/main/en/gguf) โ Next-gen model format optimized for local inference.
- [**vLLM**](https://github.com/vllm-project/vllm) โ High-throughput inference engine for transformer models.
- [**AutoGPTQ**](https://github.com/PanQiWei/AutoGPTQ) โ GPU-optimized quantized inference for large models.
**๐ Learning & Deployment:**
- [Awesome LLMs](https://github.com/Hannibal046/Awesome-LLMs) โ Curated list of LLM projects, tools, and papers.
- [LangChain](https://www.langchain.com/) โ Framework for building apps with LLMs and tools.
- [LlamaIndex](https://www.llamaindex.ai/) โ Connect LLMs with external data and documents (RAG).
---
""")
|