|
import os |
|
import gradio as gr |
|
import inspect |
|
import pandas as pd |
|
import requests |
|
import logging |
|
import datetime |
|
import json |
|
|
|
|
|
log_timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") |
|
log_file_name = f"evaluation_run_{log_timestamp}.log" |
|
|
|
|
|
logger = logging.getLogger("eval_logger") |
|
logger.setLevel(logging.INFO) |
|
file_handler = logging.FileHandler(log_file_name) |
|
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(name)s - %(module)s - %(funcName)s - %(lineno)d - %(message)s') |
|
file_handler.setFormatter(formatter) |
|
logger.addHandler(file_handler) |
|
|
|
|
|
logger.info("Logging setup complete. Log file: %s", log_file_name) |
|
|
|
|
|
from dataset_helper import fetch_all_questions, download_file |
|
|
|
|
|
from agent import LangGraphAgent |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _submit_answers_to_api(submit_url: str, submission_data: dict, results_log: list, logger_instance: logging.Logger) -> tuple[str, pd.DataFrame]: |
|
"""Handles the submission of answers to the API and processes the response.""" |
|
try: |
|
submission_log_timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f") |
|
submission_file_name = f"submission_payload_{submission_log_timestamp}.json" |
|
|
|
|
|
submissions_dir = "submissions" |
|
if not os.path.exists(submissions_dir): |
|
os.makedirs(submissions_dir) |
|
logger_instance.info(f"Created directory: {submissions_dir}") |
|
|
|
submission_file_path = os.path.join(submissions_dir, submission_file_name) |
|
|
|
with open(submission_file_path, 'w') as f: |
|
json.dump(submission_data, f, indent=4) |
|
logger_instance.info(f"Submission payload saved to: {submission_file_path}") |
|
except Exception as e: |
|
logger_instance.error(f"Failed to save submission payload: {e}", exc_info=True) |
|
|
|
logger_instance.info(f"Submitting {len(submission_data.get('answers', []))} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
logger_instance.info(f"Submission successful: {final_status}") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
logger_instance.error(status_message, exc_info=True) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
logger_instance.error(status_message, exc_info=True) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
logger_instance.error(status_message, exc_info=True) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
logger_instance.error(status_message, exc_info=True) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
logger.info("run_and_submit_all started.") |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = f"{profile.username}" |
|
logger.info(f"User logged in: {username}") |
|
else: |
|
logger.warning("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
submit_url = f"{api_url}/submit" |
|
|
|
try: |
|
logger.info("Initializing agent...") |
|
global agent |
|
agent = LangGraphAgent(api_url=DEFAULT_API_URL, answers_dir="answers") |
|
logger.info("Agent initialized.") |
|
except Exception as e: |
|
logger.error(f"Error instantiating agent: {e}", exc_info=True) |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
logger.info(f"Agent code URL: {agent_code}") |
|
|
|
logger.info(f"Fetching questions using dataset_helper from: {api_url}") |
|
questions_data = fetch_all_questions(api_url) |
|
|
|
if questions_data is None: |
|
logger.error("Failed to fetch questions via dataset_helper. questions_data is None.") |
|
return "Error fetching questions. Please check the logs.", None |
|
|
|
total_questions_fetched = len(questions_data) |
|
logger.info(f"Fetched {total_questions_fetched} questions via dataset_helper.") |
|
if not questions_data: |
|
logger.warning("Fetched questions list is empty (0 questions).") |
|
return "Fetched questions list is empty. Nothing to process.", pd.DataFrame(results_log if 'results_log' in locals() else []) |
|
|
|
results_log = [] |
|
answers_payload = [] |
|
successful_answers_count = 0 |
|
answers_from_cache_count = 0 |
|
logger.info(f"Running agent on {total_questions_fetched} questions...") |
|
for item_index, item in enumerate(questions_data): |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
file_name = item.get("file_name") |
|
logger.info(f"Processing question {item_index + 1}/{total_questions_fetched}, task_id: {task_id}") |
|
|
|
if not task_id or question_text is None: |
|
logger.warning(f"Skipping item {item_index + 1} with missing task_id or question: {item}") |
|
results_log.append({"Task ID": task_id if task_id else "MISSING_ID", "Question": question_text if question_text else "MISSING_QUESTION", "Associated File": file_name if file_name else "None", "Submitted Answer": "SKIPPED - Missing data", "From Cache": "N/A"}) |
|
continue |
|
try: |
|
submitted_answer_tuple = agent(task_id, question_text, file_name) |
|
submitted_answer, from_cache = submitted_answer_tuple |
|
|
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Associated File": file_name if file_name else "None", "Submitted Answer": submitted_answer, "From Cache": from_cache}) |
|
successful_answers_count += 1 |
|
if from_cache: |
|
answers_from_cache_count += 1 |
|
logger.info(f"Agent successfully processed task_id: {task_id} (from cache)") |
|
else: |
|
logger.info(f"Agent successfully processed task_id: {task_id} (newly generated)") |
|
except Exception as e: |
|
logger.error(f"Error running agent on task {task_id}: {e}", exc_info=True) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Associated File": file_name if file_name else "None", "Submitted Answer": f"AGENT ERROR: {e}", "From Cache": False}) |
|
|
|
logger.info(f"Agent finished processing. Successfully generated/retrieved answers for {successful_answers_count}/{total_questions_fetched} questions. {answers_from_cache_count} answers were from cache.") |
|
|
|
if not answers_payload: |
|
logger.warning("Agent did not produce any answers to submit (all attempts might have failed or been skipped).") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
|
|
summary_line = f"Agent processed {total_questions_fetched} questions. Successfully generated/retrieved {successful_answers_count} answers ({answers_from_cache_count} from cache)." |
|
logger.info(summary_line) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return _submit_answers_to_api(submit_url, submission_data, results_log, logger) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
logger.info("App Starting...") |
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
logger.info(f"SPACE_HOST found: {space_host_startup}") |
|
logger.info(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
logger.info("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
logger.info(f"SPACE_ID found: {space_id_startup}") |
|
logger.info(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
logger.info(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
logger.info("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
logger.info("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
logger.info("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |