File size: 13,206 Bytes
10e9b7d
 
7d65c66
3c4371f
a94fa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10e9b7d
e80aab9
3db6293
e80aab9
31243f4
d59f015
a94fa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
a94fa9b
 
31243f4
a94fa9b
 
 
 
 
 
 
 
3c4371f
a94fa9b
31243f4
a94fa9b
 
 
 
 
e80aab9
a94fa9b
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
a94fa9b
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
a94fa9b
7d65c66
31243f4
3c4371f
 
a94fa9b
3c4371f
 
e80aab9
31243f4
a94fa9b
31243f4
 
7d65c66
31243f4
a94fa9b
31243f4
 
e80aab9
a94fa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
e80aab9
31243f4
 
 
e80aab9
 
 
a94fa9b
3c4371f
a94fa9b
7d65c66
3c4371f
a94fa9b
 
3c4371f
a94fa9b
7d65c66
a94fa9b
 
 
 
7d65c66
a94fa9b
7d65c66
a94fa9b
3c4371f
a94fa9b
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import gradio as gr
import inspect
import pandas as pd
import requests
import logging 
import datetime
import json # Added for saving submission data


log_timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
log_file_name = f"evaluation_run_{log_timestamp}.log"


logger = logging.getLogger("eval_logger")
logger.setLevel(logging.INFO)
file_handler = logging.FileHandler(log_file_name)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(name)s - %(module)s - %(funcName)s - %(lineno)d - %(message)s')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)


logger.info("Logging setup complete. Log file: %s", log_file_name)


from dataset_helper import fetch_all_questions, download_file # fetch_random_question is also available if needed


from agent import LangGraphAgent

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
# class BasicAgent: # Moved to agent.py
#     def __init__(self, api_url: str):
#         print("BasicAgent initialized.")
#         self.api_url = api_url # Store api_url for potential use in downloading files
# 
#     def __call__(self, task_id: str, question: str, file_name: str | None) -> str:
#         print(f"Agent received task_id: {task_id}, question (first 50 chars): {question[:50]}...")
#         if file_name:
#             print(f"Question has an associated file: {file_name}")
#             # Example: Download the file if needed by the agent's logic
#             # local_file_path = download_file(self.api_url, task_id, file_name)
#             # if local_file_path:
#             #     print(f"File {file_name} downloaded to {local_file_path}")
#             #     # Agent would then process this file
#             # else:
#             #     print(f"Failed to download {file_name} for task {task_id}")
#             #     return "Error: Could not download associated file."
#         
#         # Current placeholder answer
#         fixed_answer = "This is a default answer from BasicAgent."
#         print(f"Agent returning fixed answer: {fixed_answer}")
#         return fixed_answer

def _submit_answers_to_api(submit_url: str, submission_data: dict, results_log: list, logger_instance: logging.Logger) -> tuple[str, pd.DataFrame]:
    """Handles the submission of answers to the API and processes the response."""
    try:
        submission_log_timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
        submission_file_name = f"submission_payload_{submission_log_timestamp}.json"
        
        # Create an 'submissions' directory if it doesn't exist
        submissions_dir = "submissions"
        if not os.path.exists(submissions_dir):
            os.makedirs(submissions_dir)
            logger_instance.info(f"Created directory: {submissions_dir}")

        submission_file_path = os.path.join(submissions_dir, submission_file_name)

        with open(submission_file_path, 'w') as f:
            json.dump(submission_data, f, indent=4)
        logger_instance.info(f"Submission payload saved to: {submission_file_path}")
    except Exception as e:
        logger_instance.error(f"Failed to save submission payload: {e}", exc_info=True)

    logger_instance.info(f"Submitting {len(submission_data.get('answers', []))} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        logger_instance.info(f"Submission successful: {final_status}")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        logger_instance.error(status_message, exc_info=True)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        logger_instance.error(status_message, exc_info=True)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        logger_instance.error(status_message, exc_info=True)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        logger_instance.error(status_message, exc_info=True)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    logger.info("run_and_submit_all started.")
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        logger.info(f"User logged in: {username}")
    else:
        logger.warning("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    submit_url = f"{api_url}/submit"

    try:
        logger.info("Initializing agent...")
        global agent
        agent = LangGraphAgent(api_url=DEFAULT_API_URL, answers_dir="answers")
        logger.info("Agent initialized.")
    except Exception as e:
        logger.error(f"Error instantiating agent: {e}", exc_info=True)
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    logger.info(f"Agent code URL: {agent_code}")

    logger.info(f"Fetching questions using dataset_helper from: {api_url}")
    questions_data = fetch_all_questions(api_url)

    if questions_data is None:
        logger.error("Failed to fetch questions via dataset_helper. questions_data is None.")
        return "Error fetching questions. Please check the logs.", None
    
    total_questions_fetched = len(questions_data)
    logger.info(f"Fetched {total_questions_fetched} questions via dataset_helper.")
    if not questions_data:
        logger.warning("Fetched questions list is empty (0 questions).")
        return "Fetched questions list is empty. Nothing to process.", pd.DataFrame(results_log if 'results_log' in locals() else [])

    results_log = []
    answers_payload = []
    successful_answers_count = 0
    answers_from_cache_count = 0
    logger.info(f"Running agent on {total_questions_fetched} questions...")
    for item_index, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        file_name = item.get("file_name")
        logger.info(f"Processing question {item_index + 1}/{total_questions_fetched}, task_id: {task_id}")

        if not task_id or question_text is None:
            logger.warning(f"Skipping item {item_index + 1} with missing task_id or question: {item}")
            results_log.append({"Task ID": task_id if task_id else "MISSING_ID", "Question": question_text if question_text else "MISSING_QUESTION", "Associated File": file_name if file_name else "None", "Submitted Answer": "SKIPPED - Missing data", "From Cache": "N/A"})
            continue
        try:
            submitted_answer_tuple = agent(task_id, question_text, file_name) # Returns (answer, from_cache)
            submitted_answer, from_cache = submitted_answer_tuple
            
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Associated File": file_name if file_name else "None", "Submitted Answer": submitted_answer, "From Cache": from_cache})
            successful_answers_count += 1
            if from_cache:
                answers_from_cache_count += 1
                logger.info(f"Agent successfully processed task_id: {task_id} (from cache)")
            else:
                logger.info(f"Agent successfully processed task_id: {task_id} (newly generated)")
        except Exception as e:
            logger.error(f"Error running agent on task {task_id}: {e}", exc_info=True)
            results_log.append({"Task ID": task_id, "Question": question_text, "Associated File": file_name if file_name else "None", "Submitted Answer": f"AGENT ERROR: {e}", "From Cache": False})

    logger.info(f"Agent finished processing. Successfully generated/retrieved answers for {successful_answers_count}/{total_questions_fetched} questions. {answers_from_cache_count} answers were from cache.")

    if not answers_payload:
        logger.warning("Agent did not produce any answers to submit (all attempts might have failed or been skipped).")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    
    summary_line = f"Agent processed {total_questions_fetched} questions. Successfully generated/retrieved {successful_answers_count} answers ({answers_from_cache_count} from cache)."
    logger.info(summary_line)

    # --- TEMPORARILY BYPASS SUBMISSION FOR TESTING ---
    # logger.warning("SUBMISSION TO API IS CURRENTLY BYPASSED FOR TESTING.")
    # bypassed_status_message = (
    #     f"SUBMISSION BYPASSED. {summary_line}\\n"
    #     f"User: '{username}'. Results log is available. Submission data prepared but not sent."
    # )
    # results_df = pd.DataFrame(results_log)
    # return bypassed_status_message, results_df
    # --- END OF TEMPORARY BYPASS ---

    # Call the refactored submission method, passing the global logger instance
    # Note: If re-enabling submission, ensure the summary_line is incorporated into the _submit_answers_to_api or its return message.
    return _submit_answers_to_api(submit_url, submission_data, results_log, logger)


with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    logger.info("App Starting...")
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        logger.info(f"SPACE_HOST found: {space_host_startup}")
        logger.info(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        logger.info("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        logger.info(f"SPACE_ID found: {space_id_startup}")
        logger.info(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        logger.info(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        logger.info("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    logger.info("-"*(60 + len(" App Starting ")) + "\n")

    logger.info("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)