Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import numpy as np | |
import PyPDF2 | |
import docx | |
import io | |
import os | |
from typing import List, Optional | |
class DocumentRAG: | |
def __init__(self): | |
print("π Initializing RAG System...") | |
# Initialize embedding model (lightweight) | |
self.embedder = SentenceTransformer('all-MiniLM-L6-v2') | |
print("β Embedding model loaded") | |
# Initialize quantized LLM | |
self.setup_llm() | |
# Document storage | |
self.documents = [] | |
self.index = None | |
self.is_indexed = False | |
def setup_llm(self): | |
"""Setup quantized Mistral model""" | |
try: | |
# Check if CUDA is available | |
if not torch.cuda.is_available(): | |
print("β οΈ CUDA not available, falling back to CPU or alternative model") | |
self.setup_fallback_model() | |
return | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4" | |
) | |
model_name = "mistralai/Mistral-7B-Instruct-v0.1" | |
# Load tokenizer first | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
model_name, | |
trust_remote_code=True | |
) | |
# Fix padding token issue | |
if self.tokenizer.pad_token is None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
# Load model with quantization | |
self.model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=quantization_config, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
low_cpu_mem_usage=True | |
) | |
print("β Quantized Mistral model loaded successfully") | |
except Exception as e: | |
print(f"β Error loading model: {e}") | |
print("π Falling back to alternative model...") | |
self.setup_fallback_model() | |
def setup_fallback_model(self): | |
"""Fallback to smaller model if Mistral fails""" | |
try: | |
# Use a better fallback model for Q&A | |
model_name = "distilgpt2" | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Fix padding token for fallback model too | |
if self.tokenizer.pad_token is None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
print("β Fallback model loaded") | |
except Exception as e: | |
print(f"β Fallback model failed: {e}") | |
self.model = None | |
self.tokenizer = None | |
def extract_text_from_file(self, file_path: str) -> str: | |
"""Extract text from various file formats""" | |
try: | |
file_extension = os.path.splitext(file_path)[1].lower() | |
if file_extension == '.pdf': | |
return self.extract_from_pdf(file_path) | |
elif file_extension == '.docx': | |
return self.extract_from_docx(file_path) | |
elif file_extension == '.txt': | |
return self.extract_from_txt(file_path) | |
else: | |
return f"Unsupported file format: {file_extension}" | |
except Exception as e: | |
return f"Error reading file: {str(e)}" | |
def extract_from_pdf(self, file_path: str) -> str: | |
"""Extract text from PDF""" | |
text = "" | |
try: | |
with open(file_path, 'rb') as file: | |
pdf_reader = PyPDF2.PdfReader(file) | |
for page in pdf_reader.pages: | |
text += page.extract_text() + "\n" | |
except Exception as e: | |
text = f"Error reading PDF: {str(e)}" | |
return text | |
def extract_from_docx(self, file_path: str) -> str: | |
"""Extract text from DOCX""" | |
try: | |
doc = docx.Document(file_path) | |
text = "" | |
for paragraph in doc.paragraphs: | |
text += paragraph.text + "\n" | |
return text | |
except Exception as e: | |
return f"Error reading DOCX: {str(e)}" | |
def extract_from_txt(self, file_path: str) -> str: | |
"""Extract text from TXT""" | |
try: | |
with open(file_path, 'r', encoding='utf-8') as file: | |
return file.read() | |
except Exception as e: | |
try: | |
with open(file_path, 'r', encoding='latin-1') as file: | |
return file.read() | |
except Exception as e2: | |
return f"Error reading TXT: {str(e2)}" | |
def chunk_text(self, text: str, chunk_size: int = 300, overlap: int = 50) -> List[str]: | |
"""Split text into overlapping chunks with better sentence preservation""" | |
if not text.strip(): | |
return [] | |
# Split by sentences first, then group into chunks | |
sentences = text.replace('\n', ' ').split('. ') | |
chunks = [] | |
current_chunk = "" | |
for sentence in sentences: | |
sentence = sentence.strip() | |
if not sentence: | |
continue | |
# Add sentence to current chunk | |
test_chunk = current_chunk + ". " + sentence if current_chunk else sentence | |
# If chunk gets too long, save it and start new one | |
if len(test_chunk.split()) > chunk_size: | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
current_chunk = sentence | |
else: | |
current_chunk = test_chunk | |
# Add the last chunk | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
return chunks | |
def process_documents(self, files) -> str: | |
"""Process uploaded files and create embeddings""" | |
if not files: | |
return "β No files uploaded!" | |
try: | |
all_text = "" | |
processed_files = [] | |
# Extract text from all files | |
for file in files: | |
if file is None: | |
continue | |
file_text = self.extract_text_from_file(file.name) | |
if not file_text.startswith("Error") and not file_text.startswith("Unsupported"): | |
all_text += f"\n\n--- {os.path.basename(file.name)} ---\n\n{file_text}" | |
processed_files.append(os.path.basename(file.name)) | |
else: | |
return f"β {file_text}" | |
if not all_text.strip(): | |
return "β No text extracted from files!" | |
# Chunk the text | |
self.documents = self.chunk_text(all_text) | |
if not self.documents: | |
return "β No valid text chunks created!" | |
# Create embeddings | |
print(f"π Creating embeddings for {len(self.documents)} chunks...") | |
embeddings = self.embedder.encode(self.documents, show_progress_bar=True) | |
# Build FAISS index | |
dimension = embeddings.shape[1] | |
self.index = faiss.IndexFlatIP(dimension) | |
# Normalize embeddings for cosine similarity | |
faiss.normalize_L2(embeddings) | |
self.index.add(embeddings.astype('float32')) | |
self.is_indexed = True | |
return f"β Successfully processed {len(processed_files)} files:\n" + \ | |
f"π Files: {', '.join(processed_files)}\n" + \ | |
f"π Created {len(self.documents)} text chunks\n" + \ | |
f"π Ready for Q&A!" | |
except Exception as e: | |
return f"β Error processing documents: {str(e)}" | |
def retrieve_context(self, query: str, k: int = 5) -> str: | |
"""Retrieve relevant context for the query""" | |
if not self.is_indexed: | |
return "" | |
try: | |
# Get query embedding | |
query_embedding = self.embedder.encode([query]) | |
faiss.normalize_L2(query_embedding) | |
# Search for similar chunks | |
scores, indices = self.index.search(query_embedding.astype('float32'), k) | |
# Get relevant documents with higher threshold | |
relevant_docs = [] | |
for i, idx in enumerate(indices[0]): | |
if idx < len(self.documents) and scores[0][i] > 0.2: # Higher similarity threshold | |
relevant_docs.append(self.documents[idx]) | |
return "\n\n".join(relevant_docs) | |
except Exception as e: | |
print(f"Error in retrieval: {e}") | |
return "" | |
def generate_answer(self, query: str, context: str) -> str: | |
"""Generate answer using the LLM with improved prompting""" | |
if self.model is None or self.tokenizer is None: | |
return "β Model not available. Please try again." | |
try: | |
# Check if using Mistral (has specific prompt format) or fallback model | |
model_name = getattr(self.model.config, '_name_or_path', '').lower() | |
is_mistral = 'mistral' in model_name | |
if is_mistral: | |
# Mistral-specific prompt format | |
prompt = f"""<s>[INST] You are a helpful assistant that answers questions based on the provided context. Use only the information from the context to answer. If the information is not in the context, say "I don't have enough information to answer this question." | |
Context: | |
{context[:1500]} | |
Question: {query} | |
Provide a clear and concise answer based only on the context above. [/INST]""" | |
else: | |
# Generic prompt for fallback models | |
prompt = f"""Context: {context[:1000]} | |
Question: {query} | |
Answer based on the context:""" | |
# Tokenize with proper handling | |
inputs = self.tokenizer( | |
prompt, | |
return_tensors="pt", | |
max_length=800, # Reduced to fit in memory | |
truncation=True, | |
padding=True | |
) | |
# Move to same device as model | |
if torch.cuda.is_available() and next(self.model.parameters()).is_cuda: | |
inputs = {k: v.cuda() for k, v in inputs.items()} | |
# Generate with better parameters | |
with torch.no_grad(): | |
outputs = self.model.generate( | |
**inputs, | |
max_new_tokens=150, # Reduced for more focused answers | |
temperature=0.3, # Lower temperature for more consistent answers | |
do_sample=True, | |
top_p=0.8, | |
repetition_penalty=1.1, | |
pad_token_id=self.tokenizer.pad_token_id, | |
eos_token_id=self.tokenizer.eos_token_id | |
) | |
# Decode response | |
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract answer based on model type | |
if is_mistral and "[/INST]" in full_response: | |
answer = full_response.split("[/INST]")[-1].strip() | |
else: | |
# For other models, remove the prompt | |
answer = full_response[len(prompt):].strip() | |
# Clean up the answer | |
answer = answer.replace(prompt, "").strip() | |
return answer if answer else "I couldn't generate a proper response based on the context." | |
except Exception as e: | |
return f"β Error generating answer: {str(e)}" | |
def answer_question(self, query: str) -> str: | |
"""Main function to answer questions""" | |
if not query.strip(): | |
return "β Please ask a question!" | |
if not self.is_indexed: | |
return "π Please upload and process documents first!" | |
try: | |
# Retrieve relevant context | |
context = self.retrieve_context(query) | |
if not context: | |
return "π No relevant information found in the uploaded documents for your question." | |
# Generate answer | |
answer = self.generate_answer(query, context) | |
# Format the response | |
if answer and not answer.startswith("β"): | |
return f"π‘ **Answer:** {answer}\n\nπ **Relevant Context:**\n{context[:400]}..." | |
else: | |
return answer | |
except Exception as e: | |
return f"β Error answering question: {str(e)}" | |
# Initialize the RAG system | |
print("Initializing Document RAG System...") | |
rag_system = DocumentRAG() | |
# Gradio Interface | |
def create_interface(): | |
with gr.Blocks(title="π Document Q&A with RAG", theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# π Document Q&A System | |
Upload your documents and ask questions about them! | |
**Supported formats:** PDF, DOCX, TXT | |
""") | |
with gr.Tab("π€ Upload Documents"): | |
with gr.Row(): | |
with gr.Column(): | |
file_upload = gr.File( | |
label="Upload Documents", | |
file_count="multiple", | |
file_types=[".pdf", ".docx", ".txt"] | |
) | |
process_btn = gr.Button("π Process Documents", variant="primary") | |
with gr.Column(): | |
process_status = gr.Textbox( | |
label="Processing Status", | |
lines=8, | |
interactive=False | |
) | |
process_btn.click( | |
fn=rag_system.process_documents, | |
inputs=[file_upload], | |
outputs=[process_status] | |
) | |
with gr.Tab("β Ask Questions"): | |
with gr.Row(): | |
with gr.Column(): | |
question_input = gr.Textbox( | |
label="Your Question", | |
placeholder="What would you like to know about your documents?", | |
lines=3 | |
) | |
ask_btn = gr.Button("π Get Answer", variant="primary") | |
with gr.Column(): | |
answer_output = gr.Textbox( | |
label="Answer", | |
lines=12, | |
interactive=False | |
) | |
ask_btn.click( | |
fn=rag_system.answer_question, | |
inputs=[question_input], | |
outputs=[answer_output] | |
) | |
# Example questions | |
gr.Markdown(""" | |
### π‘ Example Questions: | |
- What is the main topic of the document? | |
- Can you summarize the key points? | |
- What are the conclusions mentioned? | |
- Are there any specific numbers or statistics? | |
- Who are the main people or organizations mentioned? | |
""") | |
return demo | |
# Launch the app | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=True | |
) |