File size: 16,109 Bytes
9b56ad1
1dedfac
 
6705397
1dedfac
 
 
 
 
 
 
6705397
1dedfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8283c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3529e03
a8283c8
1dedfac
 
 
a8283c8
 
1dedfac
 
a8283c8
 
 
 
 
1dedfac
 
 
 
 
6705397
1dedfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8283c8
 
1dedfac
 
 
a8283c8
 
1dedfac
a8283c8
1dedfac
a8283c8
 
 
 
 
 
 
1dedfac
a8283c8
 
 
 
 
 
 
 
 
 
 
1dedfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8283c8
1dedfac
 
 
 
 
 
 
 
 
 
 
 
a8283c8
1dedfac
 
a8283c8
1dedfac
 
 
 
 
 
 
 
 
a8283c8
1dedfac
 
 
 
a8283c8
 
 
 
 
 
 
6705397
1dedfac
a8283c8
 
 
 
 
 
 
 
6705397
1dedfac
ea914de
a8283c8
9b56ad1
a8283c8
1dedfac
 
 
a8283c8
1dedfac
 
 
 
a8283c8
 
 
 
 
1dedfac
 
 
a8283c8
 
1dedfac
a8283c8
 
 
1dedfac
 
 
 
 
 
a8283c8
 
1dedfac
 
a8283c8
1dedfac
 
a8283c8
 
 
 
1dedfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8283c8
1dedfac
 
 
 
a8283c8
 
 
 
 
1dedfac
 
 
ea914de
1dedfac
 
 
9b56ad1
1dedfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8283c8
1dedfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8283c8
1dedfac
 
 
9b56ad1
1dedfac
6705397
1dedfac
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import PyPDF2
import docx
import io
import os
from typing import List, Optional

class DocumentRAG:
    def __init__(self):
        print("πŸš€ Initializing RAG System...")
        
        # Initialize embedding model (lightweight)
        self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
        print("βœ… Embedding model loaded")
        
        # Initialize quantized LLM
        self.setup_llm()
        
        # Document storage
        self.documents = []
        self.index = None
        self.is_indexed = False
        
    def setup_llm(self):
        """Setup quantized Mistral model"""
        try:
            # Check if CUDA is available
            if not torch.cuda.is_available():
                print("⚠️ CUDA not available, falling back to CPU or alternative model")
                self.setup_fallback_model()
                return
                
            quantization_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=torch.float16,
                bnb_4bit_use_double_quant=True,
                bnb_4bit_quant_type="nf4"
            )
            
            model_name = "mistralai/Mistral-7B-Instruct-v0.1"
            
            # Load tokenizer first
            self.tokenizer = AutoTokenizer.from_pretrained(
                model_name,
                trust_remote_code=True
            )
            
            # Fix padding token issue
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
                
            # Load model with quantization
            self.model = AutoModelForCausalLM.from_pretrained(
                model_name,
                quantization_config=quantization_config,
                device_map="auto",
                torch_dtype=torch.float16,
                trust_remote_code=True,
                low_cpu_mem_usage=True
            )
            
            print("βœ… Quantized Mistral model loaded successfully")
            
        except Exception as e:
            print(f"❌ Error loading model: {e}")
            print("πŸ”„ Falling back to alternative model...")
            self.setup_fallback_model()

    def setup_fallback_model(self):
        """Fallback to smaller model if Mistral fails"""
        try:
            # Use a better fallback model for Q&A
            model_name = "distilgpt2"
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
            self.model = AutoModelForCausalLM.from_pretrained(model_name)
            
            # Fix padding token for fallback model too
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
                
            print("βœ… Fallback model loaded")
        except Exception as e:
            print(f"❌ Fallback model failed: {e}")
            self.model = None
            self.tokenizer = None

    def extract_text_from_file(self, file_path: str) -> str:
        """Extract text from various file formats"""
        try:
            file_extension = os.path.splitext(file_path)[1].lower()
            
            if file_extension == '.pdf':
                return self.extract_from_pdf(file_path)
            elif file_extension == '.docx':
                return self.extract_from_docx(file_path)
            elif file_extension == '.txt':
                return self.extract_from_txt(file_path)
            else:
                return f"Unsupported file format: {file_extension}"
                
        except Exception as e:
            return f"Error reading file: {str(e)}"
    
    def extract_from_pdf(self, file_path: str) -> str:
        """Extract text from PDF"""
        text = ""
        try:
            with open(file_path, 'rb') as file:
                pdf_reader = PyPDF2.PdfReader(file)
                for page in pdf_reader.pages:
                    text += page.extract_text() + "\n"
        except Exception as e:
            text = f"Error reading PDF: {str(e)}"
        return text
    
    def extract_from_docx(self, file_path: str) -> str:
        """Extract text from DOCX"""
        try:
            doc = docx.Document(file_path)
            text = ""
            for paragraph in doc.paragraphs:
                text += paragraph.text + "\n"
            return text
        except Exception as e:
            return f"Error reading DOCX: {str(e)}"
    
    def extract_from_txt(self, file_path: str) -> str:
        """Extract text from TXT"""
        try:
            with open(file_path, 'r', encoding='utf-8') as file:
                return file.read()
        except Exception as e:
            try:
                with open(file_path, 'r', encoding='latin-1') as file:
                    return file.read()
            except Exception as e2:
                return f"Error reading TXT: {str(e2)}"
    
    def chunk_text(self, text: str, chunk_size: int = 300, overlap: int = 50) -> List[str]:
        """Split text into overlapping chunks with better sentence preservation"""
        if not text.strip():
            return []
        
        # Split by sentences first, then group into chunks
        sentences = text.replace('\n', ' ').split('. ')
        chunks = []
        current_chunk = ""
        
        for sentence in sentences:
            sentence = sentence.strip()
            if not sentence:
                continue
                
            # Add sentence to current chunk
            test_chunk = current_chunk + ". " + sentence if current_chunk else sentence
            
            # If chunk gets too long, save it and start new one
            if len(test_chunk.split()) > chunk_size:
                if current_chunk:
                    chunks.append(current_chunk.strip())
                current_chunk = sentence
            else:
                current_chunk = test_chunk
        
        # Add the last chunk
        if current_chunk:
            chunks.append(current_chunk.strip())
                
        return chunks
    
    def process_documents(self, files) -> str:
        """Process uploaded files and create embeddings"""
        if not files:
            return "❌ No files uploaded!"
        
        try:
            all_text = ""
            processed_files = []
            
            # Extract text from all files
            for file in files:
                if file is None:
                    continue
                    
                file_text = self.extract_text_from_file(file.name)
                if not file_text.startswith("Error") and not file_text.startswith("Unsupported"):
                    all_text += f"\n\n--- {os.path.basename(file.name)} ---\n\n{file_text}"
                    processed_files.append(os.path.basename(file.name))
                else:
                    return f"❌ {file_text}"
            
            if not all_text.strip():
                return "❌ No text extracted from files!"
            
            # Chunk the text
            self.documents = self.chunk_text(all_text)
            
            if not self.documents:
                return "❌ No valid text chunks created!"
            
            # Create embeddings
            print(f"πŸ“„ Creating embeddings for {len(self.documents)} chunks...")
            embeddings = self.embedder.encode(self.documents, show_progress_bar=True)
            
            # Build FAISS index
            dimension = embeddings.shape[1]
            self.index = faiss.IndexFlatIP(dimension)
            
            # Normalize embeddings for cosine similarity
            faiss.normalize_L2(embeddings)
            self.index.add(embeddings.astype('float32'))
            
            self.is_indexed = True
            
            return f"βœ… Successfully processed {len(processed_files)} files:\n" + \
                   f"πŸ“„ Files: {', '.join(processed_files)}\n" + \
                   f"πŸ“Š Created {len(self.documents)} text chunks\n" + \
                   f"πŸ” Ready for Q&A!"
            
        except Exception as e:
            return f"❌ Error processing documents: {str(e)}"
    
    def retrieve_context(self, query: str, k: int = 5) -> str:
        """Retrieve relevant context for the query"""
        if not self.is_indexed:
            return ""
        
        try:
            # Get query embedding
            query_embedding = self.embedder.encode([query])
            faiss.normalize_L2(query_embedding)
            
            # Search for similar chunks
            scores, indices = self.index.search(query_embedding.astype('float32'), k)
            
            # Get relevant documents with higher threshold
            relevant_docs = []
            for i, idx in enumerate(indices[0]):
                if idx < len(self.documents) and scores[0][i] > 0.2:  # Higher similarity threshold
                    relevant_docs.append(self.documents[idx])
            
            return "\n\n".join(relevant_docs)
            
        except Exception as e:
            print(f"Error in retrieval: {e}")
            return ""
    
    def generate_answer(self, query: str, context: str) -> str:
        """Generate answer using the LLM with improved prompting"""
        if self.model is None or self.tokenizer is None:
            return "❌ Model not available. Please try again."
        
        try:
            # Check if using Mistral (has specific prompt format) or fallback model
            model_name = getattr(self.model.config, '_name_or_path', '').lower()
            is_mistral = 'mistral' in model_name
            
            if is_mistral:
                # Mistral-specific prompt format
                prompt = f"""<s>[INST] You are a helpful assistant that answers questions based on the provided context. Use only the information from the context to answer. If the information is not in the context, say "I don't have enough information to answer this question."

Context:
{context[:1500]}

Question: {query}

Provide a clear and concise answer based only on the context above. [/INST]"""
            else:
                # Generic prompt for fallback models
                prompt = f"""Context: {context[:1000]}

Question: {query}

Answer based on the context:"""

            # Tokenize with proper handling
            inputs = self.tokenizer(
                prompt, 
                return_tensors="pt", 
                max_length=800,  # Reduced to fit in memory
                truncation=True,
                padding=True
            )
            
            # Move to same device as model
            if torch.cuda.is_available() and next(self.model.parameters()).is_cuda:
                inputs = {k: v.cuda() for k, v in inputs.items()}
            
            # Generate with better parameters
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=150,  # Reduced for more focused answers
                    temperature=0.3,     # Lower temperature for more consistent answers
                    do_sample=True,
                    top_p=0.8,
                    repetition_penalty=1.1,
                    pad_token_id=self.tokenizer.pad_token_id,
                    eos_token_id=self.tokenizer.eos_token_id
                )
            
            # Decode response
            full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            # Extract answer based on model type
            if is_mistral and "[/INST]" in full_response:
                answer = full_response.split("[/INST]")[-1].strip()
            else:
                # For other models, remove the prompt
                answer = full_response[len(prompt):].strip()
            
            # Clean up the answer
            answer = answer.replace(prompt, "").strip()
            
            return answer if answer else "I couldn't generate a proper response based on the context."
            
        except Exception as e:
            return f"❌ Error generating answer: {str(e)}"
    
    def answer_question(self, query: str) -> str:
        """Main function to answer questions"""
        if not query.strip():
            return "❓ Please ask a question!"
        
        if not self.is_indexed:
            return "πŸ“ Please upload and process documents first!"
        
        try:
            # Retrieve relevant context
            context = self.retrieve_context(query)
            
            if not context:
                return "πŸ” No relevant information found in the uploaded documents for your question."
            
            # Generate answer
            answer = self.generate_answer(query, context)
            
            # Format the response
            if answer and not answer.startswith("❌"):
                return f"πŸ’‘ **Answer:** {answer}\n\nπŸ“„ **Relevant Context:**\n{context[:400]}..."
            else:
                return answer
            
        except Exception as e:
            return f"❌ Error answering question: {str(e)}"

# Initialize the RAG system
print("Initializing Document RAG System...")
rag_system = DocumentRAG()

# Gradio Interface
def create_interface():
    with gr.Blocks(title="πŸ“š Document Q&A with RAG", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # πŸ“š Document Q&A System
        
        Upload your documents and ask questions about them!
        
        **Supported formats:** PDF, DOCX, TXT
        """)
        
        with gr.Tab("πŸ“€ Upload Documents"):
            with gr.Row():
                with gr.Column():
                    file_upload = gr.File(
                        label="Upload Documents",
                        file_count="multiple",
                        file_types=[".pdf", ".docx", ".txt"]
                    )
                    process_btn = gr.Button("πŸ”„ Process Documents", variant="primary")
                
                with gr.Column():
                    process_status = gr.Textbox(
                        label="Processing Status",
                        lines=8,
                        interactive=False
                    )
            
            process_btn.click(
                fn=rag_system.process_documents,
                inputs=[file_upload],
                outputs=[process_status]
            )
        
        with gr.Tab("❓ Ask Questions"):
            with gr.Row():
                with gr.Column():
                    question_input = gr.Textbox(
                        label="Your Question",
                        placeholder="What would you like to know about your documents?",
                        lines=3
                    )
                    ask_btn = gr.Button("πŸ” Get Answer", variant="primary")
                
                with gr.Column():
                    answer_output = gr.Textbox(
                        label="Answer",
                        lines=12,
                        interactive=False
                    )
            
            ask_btn.click(
                fn=rag_system.answer_question,
                inputs=[question_input],
                outputs=[answer_output]
            )
            
            # Example questions
            gr.Markdown("""
            ### πŸ’‘ Example Questions:
            - What is the main topic of the document?
            - Can you summarize the key points?
            - What are the conclusions mentioned?
            - Are there any specific numbers or statistics?
            - Who are the main people or organizations mentioned?
            """)
    
    return demo

# Launch the app
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )