Spaces:
Running
Running
import abc | |
import gradio as gr | |
import os | |
import pandas as pd | |
from gen_table import * | |
from meta_data import * | |
with gr.Blocks(title="Open Agent Leaderboard") as demo: | |
struct = load_results(OVERALL_MATH_SCORE_FILE) | |
timestamp = struct['time'] | |
EVAL_TIME = format_timestamp(timestamp) | |
results = struct['results'] | |
N_MODEL = len(results) | |
N_DATA = len(results['IO']) | |
DATASETS = list(results['IO']) | |
DATASETS.remove('META') | |
print(DATASETS) | |
# Ensure overall_table is generated before defining llm_options | |
check_box = BUILD_L1_DF(results, DEFAULT_MATH_BENCH) | |
overall_table = generate_table(results, DEFAULT_MATH_BENCH) | |
# Save the complete overall_table as a CSV file | |
csv_path_overall = os.path.join(os.getcwd(), 'src/overall_results.csv') | |
overall_table.to_csv(csv_path_overall, index=False) | |
print(f"Overall results saved to {csv_path_overall}") | |
# Extract all possible LLM options from overall_table | |
llm_options = list(set(row.LLM for row in overall_table.itertuples() if hasattr(row, 'LLM'))) | |
gr.Markdown(LEADERBORAD_INTRODUCTION.format(EVAL_TIME)) | |
with gr.Tabs(elem_classes='tab-buttons') as tabs: | |
with gr.Tab(label='π Open Agent Overall Math Leaderboard'): | |
gr.Markdown(LEADERBOARD_MD['MATH_MAIN']) | |
# Move the definition of check_box and overall_table here | |
# check_box = BUILD_L1_DF(results, DEFAULT_MATH_BENCH) | |
# overall_table = generate_table(results, DEFAULT_MATH_BENCH) | |
type_map = check_box['type_map'] | |
type_map['Rank'] = 'number' | |
checkbox_group = gr.CheckboxGroup( | |
choices=check_box['all'], | |
value=check_box['required'], | |
label='Evaluation Dimension', | |
interactive=True, | |
) | |
# New CheckboxGroup component for selecting Algorithm and LLM | |
algo_name = gr.CheckboxGroup( | |
choices=ALGORITHMS, | |
value=ALGORITHMS, | |
label='Algorithm', | |
interactive=True | |
) | |
llm_name = gr.CheckboxGroup( | |
choices=llm_options, # Use the extracted llm_options | |
value=llm_options, | |
label='LLM', | |
interactive=True | |
) | |
initial_headers = ['Rank'] + check_box['essential'] + checkbox_group.value | |
available_headers = [h for h in initial_headers if h in overall_table.columns] | |
data_component = gr.components.DataFrame( | |
value=overall_table[available_headers], | |
type='pandas', | |
datatype=[type_map[x] for x in available_headers], | |
interactive=False, | |
wrap=True, | |
visible=True) | |
def filter_df(fields, algos, llms, *args): | |
headers = ['Rank'] + check_box['essential'] + fields | |
df = overall_table.copy() | |
# Add filtering logic | |
df['flag'] = df.apply(lambda row: ( | |
row['Algorithm'] in algos and | |
row['LLM'] in llms | |
), axis=1) | |
df = df[df['flag']].copy() | |
df.pop('flag') | |
# Ensure all requested columns exist | |
available_headers = [h for h in headers if h in df.columns] | |
original_columns = df.columns.tolist() | |
available_headers = sorted(available_headers, key=lambda x: original_columns.index(x)) | |
# If no columns are available, return an empty DataFrame with basic columns | |
if not available_headers: | |
available_headers = ['Rank'] + check_box['essential'] | |
comp = gr.components.DataFrame( | |
value=df[available_headers], | |
type='pandas', | |
datatype=[type_map[x] for x in available_headers], | |
interactive=False, | |
wrap=True, | |
visible=True) | |
return comp | |
# Update change events to include new filtering conditions | |
checkbox_group.change( | |
fn=filter_df, | |
inputs=[checkbox_group, algo_name, llm_name], | |
outputs=data_component | |
) | |
algo_name.change( | |
fn=filter_df, | |
inputs=[checkbox_group, algo_name, llm_name], | |
outputs=data_component | |
) | |
llm_name.change( | |
fn=filter_df, | |
inputs=[checkbox_group, algo_name, llm_name], | |
outputs=data_component | |
) | |
with gr.Tab(label='π Open Agent Detail Math Leaderboard'): | |
gr.Markdown(LEADERBOARD_MD['MATH_DETAIL']) | |
struct_detail = load_results(DETAIL_MATH_SCORE_FILE) | |
timestamp = struct_detail['time'] | |
EVAL_TIME = format_timestamp(timestamp) | |
results_detail = struct_detail['results'] | |
table, check_box = BUILD_L2_DF(results_detail, DEFAULT_MATH_BENCH) | |
# Save the complete table as a CSV file | |
csv_path_detail = os.path.join(os.getcwd(), 'src/detail_results.csv') | |
table.to_csv(csv_path_detail, index=False) | |
print(f"Detail results saved to {csv_path_detail}") | |
type_map = check_box['type_map'] | |
type_map['Rank'] = 'number' | |
checkbox_group = gr.CheckboxGroup( | |
choices=check_box['all'], | |
value=check_box['required'], | |
label='Evaluation Dimension', | |
interactive=True, | |
) | |
headers = ['Rank'] + checkbox_group.value | |
with gr.Row(): | |
algo_name = gr.CheckboxGroup( | |
choices=ALGORITHMS, | |
value=ALGORITHMS, | |
label='Algorithm', | |
interactive=True | |
) | |
dataset_name = gr.CheckboxGroup( | |
choices=DATASETS, | |
value=DATASETS, | |
label='Datasets', | |
interactive=True | |
) | |
llm_name = gr.CheckboxGroup( | |
choices=check_box['LLM_options'], | |
value=check_box['LLM_options'], | |
label='LLM', | |
interactive=True | |
) | |
data_component = gr.components.DataFrame( | |
value=table[headers], | |
type='pandas', | |
datatype=[type_map[x] for x in headers], | |
interactive=False, | |
wrap=True, | |
visible=True) | |
def filter_df2(fields, algos, datasets, llms): | |
headers = ['Rank'] + fields | |
df = table.copy() | |
# Filter data | |
df['flag'] = df.apply(lambda row: ( | |
row['Algorithm'] in algos and | |
row['Dataset'] in datasets and | |
row['LLM'] in llms | |
), axis=1) | |
df = df[df['flag']].copy() | |
df.pop('flag') | |
# Group by dataset and calculate ranking within each group based on Score | |
if 'Score' in df.columns: | |
# Create a temporary ranking column | |
df['Rank'] = df.groupby('Dataset')['Score'].rank(method='first', ascending=False) | |
# Ensure ranking is integer | |
df['Rank'] = df['Rank'].astype(int) | |
original_columns = df.columns.tolist() | |
headers = sorted(headers, key=lambda x: original_columns.index(x)) | |
comp = gr.components.DataFrame( | |
value=df[headers], | |
type='pandas', | |
datatype=[type_map[x] for x in headers], | |
interactive=False, | |
wrap=True, | |
visible=True) | |
return comp | |
# Add change events for all checkbox groups | |
checkbox_group.change( | |
fn=filter_df2, | |
inputs=[checkbox_group, algo_name, dataset_name, llm_name], | |
outputs=data_component | |
) | |
algo_name.change( | |
fn=filter_df2, | |
inputs=[checkbox_group, algo_name, dataset_name, llm_name], | |
outputs=data_component | |
) | |
dataset_name.change( | |
fn=filter_df2, | |
inputs=[checkbox_group, algo_name, dataset_name, llm_name], | |
outputs=data_component | |
) | |
llm_name.change( | |
fn=filter_df2, | |
inputs=[checkbox_group, algo_name, dataset_name, llm_name], | |
outputs=data_component | |
) | |
with gr.Tab(label='π Open Agent Multi-Modal Leaderboard'): | |
gr.Markdown(LEADERBOARD_MD['MULTI_MODAL_MAIN']) | |
struct_multi_modal = load_results(MULTIMODAL_SCORE_FILE) | |
timestamp = struct_multi_modal['time'] | |
EVAL_TIME_MM = format_timestamp(timestamp) | |
# Use BUILD_L3_DF to process multi-modal results (pass the list directly) | |
table_mm, check_box_mm = BUILD_L3_DF( | |
struct_multi_modal['multi_modal_results'], DEFAULT_MULTI_MODAL_BENCH | |
) | |
# Save the complete table as a CSV file | |
csv_path_multi_modal = os.path.join(os.getcwd(), 'src/multi_modal_results.csv') | |
table_mm.to_csv(csv_path_multi_modal, index=False) | |
print(f"Multi-modal results saved to {csv_path_multi_modal}") | |
type_map_mm = check_box_mm['type_map'] | |
checkbox_group_mm = gr.CheckboxGroup( | |
choices=check_box_mm['all'], | |
value=check_box_mm['required'], | |
label='Evaluation Dimension', | |
interactive=True, | |
) | |
# Ensure unique values for Agent and VLMs | |
unique_agents = sorted(table_mm['Agent'].drop_duplicates().str.strip().tolist()) | |
unique_vlms = sorted(table_mm['VLMs'].drop_duplicates().str.strip().tolist()) | |
agent_name_mm = gr.CheckboxGroup( | |
choices=unique_agents, | |
value=unique_agents, | |
label='Agent', | |
interactive=True | |
) | |
vlm_name_mm = gr.CheckboxGroup( | |
choices=unique_vlms, | |
value=unique_vlms, | |
label='VLMs', | |
interactive=True | |
) | |
initial_headers_mm = ['Rank'] + checkbox_group_mm.value | |
print(initial_headers_mm, "111111111") | |
available_headers_mm = [h for h in initial_headers_mm if h in table_mm.columns] | |
data_component_mm = gr.components.DataFrame( | |
value=table_mm[available_headers_mm], | |
type='pandas', | |
datatype=[type_map_mm[x] for x in available_headers_mm], | |
interactive=False, | |
wrap=True, | |
visible=True | |
) | |
def filter_df_mm(fields, agents, vlms, *args): | |
headers = ['Rank'] + fields | |
df = table_mm.copy() | |
# Validate inputs to avoid errors | |
if not agents: | |
agents = df['Agent'].unique().tolist() | |
if not vlms: | |
vlms = df['VLMs'].unique().tolist() | |
# Add filtering logic | |
df['flag'] = df.apply(lambda row: ( | |
row['Agent'] in agents and | |
row['VLMs'] in vlms | |
), axis=1) | |
df = df[df['flag']].copy() | |
df.pop('flag') | |
# Ensure all requested columns exist | |
available_headers = [h for h in headers if h in df.columns] | |
# If no columns are available, return an empty DataFrame with basic columns | |
if not available_headers: | |
available_headers = ['Rank'] + check_box_mm['essential'] | |
comp = gr.components.DataFrame( | |
value=df[available_headers], | |
type='pandas', | |
datatype=[type_map_mm.get(col, 'str') for col in available_headers], | |
interactive=False, | |
wrap=True, | |
visible=True | |
) | |
return comp | |
# Add change events for multi-modal leaderboard | |
checkbox_group_mm.change( | |
fn=filter_df_mm, | |
inputs=[checkbox_group_mm, agent_name_mm, vlm_name_mm], | |
outputs=data_component_mm | |
) | |
agent_name_mm.change( | |
fn=filter_df_mm, | |
inputs=[checkbox_group_mm, agent_name_mm, vlm_name_mm], | |
outputs=data_component_mm | |
) | |
vlm_name_mm.change( | |
fn=filter_df_mm, | |
inputs=[checkbox_group_mm, agent_name_mm, vlm_name_mm], | |
outputs=data_component_mm | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
gr.Textbox( | |
value=CITATION_BUTTON_TEXT, lines=7, | |
label="Copy the BibTeX snippet to cite this source", | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
if __name__ == '__main__': | |
demo.launch(server_name='0.0.0.0') |