Spaces:
Running
Running
File size: 13,843 Bytes
fc71d05 975614a c9a97c2 9ec00c3 975614a fc71d05 e90e797 bd69a52 fc71d05 cd01d35 c9a97c2 cd01d35 c9a97c2 cd01d35 c9a97c2 fc71d05 bd69a52 bbcdbca fc71d05 cd01d35 c9a97c2 fc71d05 cd01d35 c9a97c2 cd01d35 c9a97c2 8d8059b e90e797 fc71d05 e90e797 fc71d05 8d8059b fc71d05 c9a97c2 fc71d05 c9a97c2 cd01d35 c9a97c2 e90e797 a7d1809 c9a97c2 e90e797 c9a97c2 e90e797 a7d1809 8d8059b fc71d05 c9a97c2 fc71d05 8d8059b fc71d05 8d8059b fc71d05 c9a97c2 fc71d05 cd01d35 fc71d05 c9a97c2 fc71d05 bbcdbca fc71d05 c9a97c2 cd01d35 c9a97c2 fc71d05 975614a fc71d05 975614a fc71d05 975614a fc71d05 c9a97c2 fc71d05 e90e797 fc71d05 a7d1809 fc71d05 a7d1809 fc71d05 a7d1809 fc71d05 a7d1809 fc71d05 e90e797 fc71d05 c9a97c2 fc71d05 cd01d35 fc71d05 e90e797 fc71d05 e90e797 fc71d05 975614a fc71d05 e90e797 fc71d05 e90e797 fc71d05 9ec00c3 8615a6f 9ec00c3 8615a6f 9ec00c3 8615a6f 9ec00c3 8615a6f 9ec00c3 8615a6f 9ec00c3 975614a fc71d05 975614a c9a97c2 fc71d05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import abc
import gradio as gr
import os
import pandas as pd
from gen_table import *
from meta_data import *
with gr.Blocks(title="Open Agent Leaderboard") as demo:
struct = load_results(OVERALL_MATH_SCORE_FILE)
timestamp = struct['time']
EVAL_TIME = format_timestamp(timestamp)
results = struct['results']
N_MODEL = len(results)
N_DATA = len(results['IO'])
DATASETS = list(results['IO'])
DATASETS.remove('META')
print(DATASETS)
# Ensure overall_table is generated before defining llm_options
check_box = BUILD_L1_DF(results, DEFAULT_MATH_BENCH)
overall_table = generate_table(results, DEFAULT_MATH_BENCH)
# Save the complete overall_table as a CSV file
csv_path_overall = os.path.join(os.getcwd(), 'src/overall_results.csv')
overall_table.to_csv(csv_path_overall, index=False)
print(f"Overall results saved to {csv_path_overall}")
# Extract all possible LLM options from overall_table
llm_options = list(set(row.LLM for row in overall_table.itertuples() if hasattr(row, 'LLM')))
gr.Markdown(LEADERBORAD_INTRODUCTION.format(EVAL_TIME))
with gr.Tabs(elem_classes='tab-buttons') as tabs:
with gr.Tab(label='π
Open Agent Overall Math Leaderboard'):
gr.Markdown(LEADERBOARD_MD['MATH_MAIN'])
# Move the definition of check_box and overall_table here
# check_box = BUILD_L1_DF(results, DEFAULT_MATH_BENCH)
# overall_table = generate_table(results, DEFAULT_MATH_BENCH)
type_map = check_box['type_map']
type_map['Rank'] = 'number'
checkbox_group = gr.CheckboxGroup(
choices=check_box['all'],
value=check_box['required'],
label='Evaluation Dimension',
interactive=True,
)
# New CheckboxGroup component for selecting Algorithm and LLM
algo_name = gr.CheckboxGroup(
choices=ALGORITHMS,
value=ALGORITHMS,
label='Algorithm',
interactive=True
)
llm_name = gr.CheckboxGroup(
choices=llm_options, # Use the extracted llm_options
value=llm_options,
label='LLM',
interactive=True
)
initial_headers = ['Rank'] + check_box['essential'] + checkbox_group.value
available_headers = [h for h in initial_headers if h in overall_table.columns]
data_component = gr.components.DataFrame(
value=overall_table[available_headers],
type='pandas',
datatype=[type_map[x] for x in available_headers],
interactive=False,
wrap=True,
visible=True)
def filter_df(fields, algos, llms, *args):
headers = ['Rank'] + check_box['essential'] + fields
df = overall_table.copy()
# Add filtering logic
df['flag'] = df.apply(lambda row: (
row['Algorithm'] in algos and
row['LLM'] in llms
), axis=1)
df = df[df['flag']].copy()
df.pop('flag')
# Ensure all requested columns exist
available_headers = [h for h in headers if h in df.columns]
original_columns = df.columns.tolist()
available_headers = sorted(available_headers, key=lambda x: original_columns.index(x))
# If no columns are available, return an empty DataFrame with basic columns
if not available_headers:
available_headers = ['Rank'] + check_box['essential']
comp = gr.components.DataFrame(
value=df[available_headers],
type='pandas',
datatype=[type_map[x] for x in available_headers],
interactive=False,
wrap=True,
visible=True)
return comp
# Update change events to include new filtering conditions
checkbox_group.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, llm_name],
outputs=data_component
)
algo_name.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, llm_name],
outputs=data_component
)
llm_name.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, llm_name],
outputs=data_component
)
with gr.Tab(label='π
Open Agent Detail Math Leaderboard'):
gr.Markdown(LEADERBOARD_MD['MATH_DETAIL'])
struct_detail = load_results(DETAIL_MATH_SCORE_FILE)
timestamp = struct_detail['time']
EVAL_TIME = format_timestamp(timestamp)
results_detail = struct_detail['results']
table, check_box = BUILD_L2_DF(results_detail, DEFAULT_MATH_BENCH)
# Save the complete table as a CSV file
csv_path_detail = os.path.join(os.getcwd(), 'src/detail_results.csv')
table.to_csv(csv_path_detail, index=False)
print(f"Detail results saved to {csv_path_detail}")
type_map = check_box['type_map']
type_map['Rank'] = 'number'
checkbox_group = gr.CheckboxGroup(
choices=check_box['all'],
value=check_box['required'],
label='Evaluation Dimension',
interactive=True,
)
headers = ['Rank'] + checkbox_group.value
with gr.Row():
algo_name = gr.CheckboxGroup(
choices=ALGORITHMS,
value=ALGORITHMS,
label='Algorithm',
interactive=True
)
dataset_name = gr.CheckboxGroup(
choices=DATASETS,
value=DATASETS,
label='Datasets',
interactive=True
)
llm_name = gr.CheckboxGroup(
choices=check_box['LLM_options'],
value=check_box['LLM_options'],
label='LLM',
interactive=True
)
data_component = gr.components.DataFrame(
value=table[headers],
type='pandas',
datatype=[type_map[x] for x in headers],
interactive=False,
wrap=True,
visible=True)
def filter_df2(fields, algos, datasets, llms):
headers = ['Rank'] + fields
df = table.copy()
# Filter data
df['flag'] = df.apply(lambda row: (
row['Algorithm'] in algos and
row['Dataset'] in datasets and
row['LLM'] in llms
), axis=1)
df = df[df['flag']].copy()
df.pop('flag')
# Group by dataset and calculate ranking within each group based on Score
if 'Score' in df.columns:
# Create a temporary ranking column
df['Rank'] = df.groupby('Dataset')['Score'].rank(method='first', ascending=False)
# Ensure ranking is integer
df['Rank'] = df['Rank'].astype(int)
original_columns = df.columns.tolist()
headers = sorted(headers, key=lambda x: original_columns.index(x))
comp = gr.components.DataFrame(
value=df[headers],
type='pandas',
datatype=[type_map[x] for x in headers],
interactive=False,
wrap=True,
visible=True)
return comp
# Add change events for all checkbox groups
checkbox_group.change(
fn=filter_df2,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
algo_name.change(
fn=filter_df2,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
dataset_name.change(
fn=filter_df2,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
llm_name.change(
fn=filter_df2,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
with gr.Tab(label='π
Open Agent Multi-Modal Leaderboard'):
gr.Markdown(LEADERBOARD_MD['MULTI_MODAL_MAIN'])
struct_multi_modal = load_results(MULTIMODAL_SCORE_FILE)
timestamp = struct_multi_modal['time']
EVAL_TIME_MM = format_timestamp(timestamp)
# Use BUILD_L3_DF to process multi-modal results (pass the list directly)
table_mm, check_box_mm = BUILD_L3_DF(
struct_multi_modal['multi_modal_results'], DEFAULT_MULTI_MODAL_BENCH
)
# Save the complete table as a CSV file
csv_path_multi_modal = os.path.join(os.getcwd(), 'src/multi_modal_results.csv')
table_mm.to_csv(csv_path_multi_modal, index=False)
print(f"Multi-modal results saved to {csv_path_multi_modal}")
type_map_mm = check_box_mm['type_map']
checkbox_group_mm = gr.CheckboxGroup(
choices=check_box_mm['all'],
value=check_box_mm['required'],
label='Evaluation Dimension',
interactive=True,
)
# Ensure unique values for Agent and VLMs
unique_agents = sorted(table_mm['Agent'].drop_duplicates().str.strip().tolist())
unique_vlms = sorted(table_mm['VLMs'].drop_duplicates().str.strip().tolist())
agent_name_mm = gr.CheckboxGroup(
choices=unique_agents,
value=unique_agents,
label='Agent',
interactive=True
)
vlm_name_mm = gr.CheckboxGroup(
choices=unique_vlms,
value=unique_vlms,
label='VLMs',
interactive=True
)
initial_headers_mm = ['Rank'] + checkbox_group_mm.value
print(initial_headers_mm, "111111111")
available_headers_mm = [h for h in initial_headers_mm if h in table_mm.columns]
data_component_mm = gr.components.DataFrame(
value=table_mm[available_headers_mm],
type='pandas',
datatype=[type_map_mm[x] for x in available_headers_mm],
interactive=False,
wrap=True,
visible=True
)
def filter_df_mm(fields, agents, vlms, *args):
headers = ['Rank'] + fields
df = table_mm.copy()
# Validate inputs to avoid errors
if not agents:
agents = df['Agent'].unique().tolist()
if not vlms:
vlms = df['VLMs'].unique().tolist()
# Add filtering logic
df['flag'] = df.apply(lambda row: (
row['Agent'] in agents and
row['VLMs'] in vlms
), axis=1)
df = df[df['flag']].copy()
df.pop('flag')
# Ensure all requested columns exist
available_headers = [h for h in headers if h in df.columns]
# If no columns are available, return an empty DataFrame with basic columns
if not available_headers:
available_headers = ['Rank'] + check_box_mm['essential']
comp = gr.components.DataFrame(
value=df[available_headers],
type='pandas',
datatype=[type_map_mm.get(col, 'str') for col in available_headers],
interactive=False,
wrap=True,
visible=True
)
return comp
# Add change events for multi-modal leaderboard
checkbox_group_mm.change(
fn=filter_df_mm,
inputs=[checkbox_group_mm, agent_name_mm, vlm_name_mm],
outputs=data_component_mm
)
agent_name_mm.change(
fn=filter_df_mm,
inputs=[checkbox_group_mm, agent_name_mm, vlm_name_mm],
outputs=data_component_mm
)
vlm_name_mm.change(
fn=filter_df_mm,
inputs=[checkbox_group_mm, agent_name_mm, vlm_name_mm],
outputs=data_component_mm
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT, lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True,
)
if __name__ == '__main__':
demo.launch(server_name='0.0.0.0') |