Spaces:
Sleeping
Sleeping
File size: 12,763 Bytes
24d09a0 fc6cf5f 24d09a0 fc6cf5f 24d09a0 fc6cf5f 24d09a0 fc6cf5f 24d09a0 fc6cf5f 24d09a0 fc6cf5f 24d09a0 fc6cf5f 24d09a0 fc6cf5f 24d09a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import gradio as gr
import joblib
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import euclidean_distances
import random
import plotly.graph_objects as go
import plotly.express as px
model = joblib.load("churn_model.pkl")
model_features = joblib.load("model_features.pkl")
# Load the customer data
customer_df = pd.read_csv("Telco-Customer-Churn.csv")
customer_df['MonthlyCharges'] = pd.to_numeric(customer_df['MonthlyCharges'], errors='coerce').fillna(0)
customer_df['TotalCharges'] = pd.to_numeric(customer_df['TotalCharges'], errors='coerce').fillna(0)
customer_df['tenure'] = pd.to_numeric(customer_df['tenure'], errors='coerce').fillna(0)
value_map = {
"Aydan aya": "Month-to-month",
"1 yıllık": "One year",
"2 yıllık": "Two year",
"Elektronik çek": "Electronic check",
"Posta çeki": "Mailed check",
"Banka havalesi (otomatik)": "Bank transfer (automatic)",
"Kredi kartı (otomatik)": "Credit card (automatic)",
"Hayır": "No",
"Evet": "Yes",
"Yok": "No internet service",
"Telefon hizmeti yok": "No phone service",
"Fiber optik": "Fiber optic",
"Erkek": "Male",
"Kadın": "Female"
}
def customer_to_features(row):
# Build a feature dict for a customer row, using the same logic as predict_churn
input_dict = {}
tenure = row['tenure']
monthly = row['MonthlyCharges']
total = row['TotalCharges']
input_dict["tenure"] = tenure
input_dict["PhoneService"] = row['PhoneService'] == "Yes"
input_dict["avg_charge_per_month"] = total / tenure if tenure > 0 else 0
input_dict["charge_ratio"] = total / (monthly * tenure) if monthly > 0 and tenure > 0 else 1
tenure_label = "0-12" if tenure <= 12 else "12-24" if tenure <= 24 else "24+"
for bin_label in ["0-12", "12-24", "24+"]:
input_dict[f"tenure_bin_{bin_label}"] = (tenure_label == bin_label)
contract_value = row['Contract']
input_dict["is_long_term_contract"] = contract_value in ["One year", "Two year"]
categorical_fields = [
"gender", "SeniorCitizen", "Partner", "Dependents", "PaperlessBilling",
"MultipleLines", "InternetService", "OnlineSecurity", "OnlineBackup",
"DeviceProtection", "TechSupport", "StreamingTV", "StreamingMovies",
"Contract", "PaymentMethod"
]
for field in categorical_fields:
raw_value = row[field]
mapped_value = value_map.get(raw_value, raw_value)
for col in model_features:
if col.startswith(f"{field}_"):
input_dict[col] = (col == f"{field}_{mapped_value}")
for col in model_features:
if col not in input_dict:
input_dict[col] = 0 if col == "tenure" or "charge" in col or "avg" in col else False
return [input_dict[col] for col in model_features]
# Precompute all customer feature vectors
customer_feature_matrix = np.vstack([customer_to_features(row) for _, row in customer_df.iterrows()])
def autofill_random_customer():
row = customer_df.sample(1).iloc[0]
# Map English values back to Turkish for dropdowns
reverse_map = {v: k for k, v in value_map.items()}
def rev(val):
return reverse_map.get(val, val)
# Ensure dropdown values are valid
def safe(val, allowed):
v = rev(val)
return v if v in allowed else allowed[0]
return [
float(row['tenure']),
float(row['MonthlyCharges']),
float(row['TotalCharges']),
safe(row['PhoneService'], phone_service_options),
safe(row['gender'], gender_options),
'Evet' if row['SeniorCitizen'] == 1 else 'Hayır',
'Evet' if row['Partner'] == 'Yes' else 'Hayır',
'Evet' if row['Dependents'] == 'Yes' else 'Hayır',
'Evet' if row['PaperlessBilling'] == 'Yes' else 'Hayır',
safe(row['MultipleLines'], multiple_lines_options),
safe(row['InternetService'], internet_service_options),
safe(row['OnlineSecurity'], online_security_options),
safe(row['OnlineBackup'], online_backup_options),
safe(row['DeviceProtection'], device_protection_options),
safe(row['TechSupport'], tech_support_options),
safe(row['StreamingTV'], streaming_tv_options),
safe(row['StreamingMovies'], streaming_movies_options),
safe(row['Contract'], contract_options),
safe(row['PaymentMethod'], payment_method_options)
]
def find_similar_customers_vector(input_vector, n=5):
dists = euclidean_distances(customer_feature_matrix, input_vector.reshape(1, -1)).flatten()
top_idx = np.argsort(dists)[:n]
print("Top distances:", dists[top_idx])
print("Top indices:", top_idx)
return customer_df.iloc[top_idx][['customerID','gender','SeniorCitizen','Partner','Dependents','tenure','Contract','PaymentMethod','MonthlyCharges','TotalCharges','Churn']]
def predict_churn(
tenure, monthly, total, PhoneService, gender, SeniorCitizen, Partner, Dependents, PaperlessBilling,
MultipleLines, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport,
StreamingTV, StreamingMovies, Contract, PaymentMethod
):
# Ensure numeric types
tenure = float(tenure)
monthly = float(monthly)
total = float(total)
input_dict = {}
input_dict["tenure"] = tenure
input_dict["PhoneService"] = PhoneService == "Evet"
input_dict["avg_charge_per_month"] = total / tenure if tenure > 0 else 0
input_dict["charge_ratio"] = total / (monthly * tenure) if monthly > 0 and tenure > 0 else 1
tenure_label = "0-12" if tenure <= 12 else "12-24" if tenure <= 24 else "24+"
for bin_label in ["0-12", "12-24", "24+"]:
input_dict[f"tenure_bin_{bin_label}"] = (tenure_label == bin_label)
contract_value = value_map.get(Contract, Contract)
input_dict["is_long_term_contract"] = contract_value in ["One year", "Two year"]
categorical_fields = [
"gender", "SeniorCitizen", "Partner", "Dependents", "PaperlessBilling",
"MultipleLines", "InternetService", "OnlineSecurity", "OnlineBackup",
"DeviceProtection", "TechSupport", "StreamingTV", "StreamingMovies",
"Contract", "PaymentMethod"
]
form = {
"gender": gender,
"SeniorCitizen": SeniorCitizen,
"Partner": Partner,
"Dependents": Dependents,
"PaperlessBilling": PaperlessBilling,
"MultipleLines": MultipleLines,
"InternetService": InternetService,
"OnlineSecurity": OnlineSecurity,
"OnlineBackup": OnlineBackup,
"DeviceProtection": DeviceProtection,
"TechSupport": TechSupport,
"StreamingTV": StreamingTV,
"StreamingMovies": StreamingMovies,
"Contract": Contract,
"PaymentMethod": PaymentMethod
}
for field in categorical_fields:
raw_value = form[field]
mapped_value = value_map.get(raw_value, raw_value)
for col in model_features:
if col.startswith(f"{field}_"):
input_dict[col] = (col == f"{field}_{mapped_value}")
for col in model_features:
if col not in input_dict:
input_dict[col] = 0 if col == "tenure" or "charge" in col or "avg" in col else False
input_df = pd.DataFrame([[input_dict[col] for col in model_features]], columns=model_features)
prediction = model.predict_proba(input_df)[0][1]
score = round(prediction * 100, 2)
# Create gauge chart for churn risk
fig_gauge = go.Figure(go.Indicator(
mode = "gauge+number",
value = score,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "Churn Riski"},
gauge = {
'axis': {'range': [0, 100]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 30], 'color': "lightgreen"},
{'range': [30, 70], 'color': "yellow"},
{'range': [70, 100], 'color': "red"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 50
}
}
))
# Create pie chart for probability distribution
fig_pie = px.pie(
values=[score, 100-score],
names=['Churn Riski', 'Kalma Olasılığı'],
title='Müşteri Durumu Dağılımı',
color_discrete_sequence=['red', 'green']
)
if score >= 50:
comment = "Müşteri Kaybedilebilir."
else:
comment = "Müşteri Kayıp Riski Taşımıyor."
result = f"Churn Riski: %{score} — {comment}"
# Vector similarity
similar_customers = find_similar_customers_vector(input_df.values[0], n=5)
return result, fig_gauge, fig_pie, similar_customers
# Define options for dropdowns (Turkish values)
phone_service_options = ["Evet", "Hayır"]
gender_options = ["Erkek", "Kadın"]
senior_citizen_options = ["Evet", "Hayır"]
partner_options = ["Evet", "Hayır"]
dependents_options = ["Evet", "Hayır"]
paperless_billing_options = ["Evet", "Hayır"]
multiple_lines_options = ["Hayır", "Evet", "Telefon hizmeti yok"]
internet_service_options = ["DSL", "Fiber optik", "Yok"]
online_security_options = ["Hayır", "Evet", "Yok"]
online_backup_options = ["Hayır", "Evet", "Yok"]
device_protection_options = ["Hayır", "Evet", "Yok"]
tech_support_options = ["Hayır", "Evet", "Yok"]
streaming_tv_options = ["Hayır", "Evet", "Yok"]
streaming_movies_options = ["Hayır", "Evet", "Yok"]
contract_options = ["Aydan aya", "1 yıllık", "2 yıllık"]
payment_method_options = [
"Elektronik çek", "Posta çeki", "Banka havalesi (otomatik)", "Kredi kartı (otomatik)"
]
with gr.Blocks() as demo:
gr.Markdown("# Müşteri Churn Tahmini")
with gr.Row():
tenure = gr.Number(label="Kullanım Süresi (tenure)", value=1)
monthly = gr.Number(label="Aylık Ücret (MonthlyCharges)", value=1)
total = gr.Number(label="Toplam Ücret (TotalCharges)", value=1)
with gr.Row():
PhoneService = gr.Dropdown(phone_service_options, label="Telefon Hizmeti (PhoneService)")
gender = gr.Dropdown(gender_options, label="Cinsiyet (gender)")
SeniorCitizen = gr.Dropdown(senior_citizen_options, label="Kıdemli Vatandaş (SeniorCitizen)")
Partner = gr.Dropdown(partner_options, label="Partner")
Dependents = gr.Dropdown(dependents_options, label="Bağımlılar (Dependents)")
PaperlessBilling = gr.Dropdown(paperless_billing_options, label="Kağıtsız Fatura (PaperlessBilling)")
with gr.Row():
MultipleLines = gr.Dropdown(multiple_lines_options, label="Çoklu Hat (MultipleLines)")
InternetService = gr.Dropdown(internet_service_options, label="İnternet Servisi (InternetService)")
OnlineSecurity = gr.Dropdown(online_security_options, label="Online Güvenlik (OnlineSecurity)")
OnlineBackup = gr.Dropdown(online_backup_options, label="Online Yedekleme (OnlineBackup)")
DeviceProtection = gr.Dropdown(device_protection_options, label="Cihaz Koruma (DeviceProtection)")
TechSupport = gr.Dropdown(tech_support_options, label="Teknik Destek (TechSupport)")
StreamingTV = gr.Dropdown(streaming_tv_options, label="TV Yayını (StreamingTV)")
StreamingMovies = gr.Dropdown(streaming_movies_options, label="Film Yayını (StreamingMovies)")
with gr.Row():
Contract = gr.Dropdown(contract_options, label="Sözleşme (Contract)")
PaymentMethod = gr.Dropdown(payment_method_options, label="Ödeme Yöntemi (PaymentMethod)")
autofill_btn = gr.Button("Rastgele Müşteri ile Doldur")
submit_btn = gr.Button("Tahmin Et")
with gr.Row():
output = gr.Textbox(label="Sonuç")
with gr.Row():
gauge_plot = gr.Plot(label="Churn Risk Gauge")
pie_plot = gr.Plot(label="Probability Distribution")
similar_customers_table = gr.Dataframe(label="Benzer Müşteriler (İlk 5)")
autofill_btn.click(
autofill_random_customer,
inputs=[],
outputs=[tenure, monthly, total, PhoneService, gender, SeniorCitizen, Partner, Dependents, PaperlessBilling,
MultipleLines, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport,
StreamingTV, StreamingMovies, Contract, PaymentMethod]
)
submit_btn.click(
predict_churn,
inputs=[tenure, monthly, total, PhoneService, gender, SeniorCitizen, Partner, Dependents, PaperlessBilling,
MultipleLines, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport,
StreamingTV, StreamingMovies, Contract, PaymentMethod],
outputs=[output, gauge_plot, pie_plot, similar_customers_table]
)
if __name__ == "__main__":
demo.launch() |