Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- gradio_app.py +46 -3
gradio_app.py
CHANGED
@@ -4,6 +4,8 @@ import pandas as pd
|
|
4 |
import numpy as np
|
5 |
from sklearn.metrics.pairwise import euclidean_distances
|
6 |
import random
|
|
|
|
|
7 |
|
8 |
model = joblib.load("churn_model.pkl")
|
9 |
model_features = joblib.load("model_features.pkl")
|
@@ -160,14 +162,46 @@ def predict_churn(
|
|
160 |
input_df = pd.DataFrame([[input_dict[col] for col in model_features]], columns=model_features)
|
161 |
prediction = model.predict_proba(input_df)[0][1]
|
162 |
score = round(prediction * 100, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
if score >= 50:
|
164 |
comment = "Müşteri Kaybedilebilir."
|
165 |
else:
|
166 |
comment = "Müşteri Kayıp Riski Taşımıyor."
|
167 |
result = f"Churn Riski: %{score} — {comment}"
|
|
|
168 |
# Vector similarity
|
169 |
similar_customers = find_similar_customers_vector(input_df.values[0], n=5)
|
170 |
-
return result, similar_customers
|
171 |
|
172 |
# Define options for dropdowns (Turkish values)
|
173 |
phone_service_options = ["Evet", "Hayır"]
|
@@ -214,10 +248,19 @@ with gr.Blocks() as demo:
|
|
214 |
with gr.Row():
|
215 |
Contract = gr.Dropdown(contract_options, label="Sözleşme (Contract)")
|
216 |
PaymentMethod = gr.Dropdown(payment_method_options, label="Ödeme Yöntemi (PaymentMethod)")
|
|
|
217 |
autofill_btn = gr.Button("Rastgele Müşteri ile Doldur")
|
218 |
submit_btn = gr.Button("Tahmin Et")
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
similar_customers_table = gr.Dataframe(label="Benzer Müşteriler (İlk 5)")
|
|
|
221 |
autofill_btn.click(
|
222 |
autofill_random_customer,
|
223 |
inputs=[],
|
@@ -230,7 +273,7 @@ with gr.Blocks() as demo:
|
|
230 |
inputs=[tenure, monthly, total, PhoneService, gender, SeniorCitizen, Partner, Dependents, PaperlessBilling,
|
231 |
MultipleLines, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport,
|
232 |
StreamingTV, StreamingMovies, Contract, PaymentMethod],
|
233 |
-
outputs=[output, similar_customers_table]
|
234 |
)
|
235 |
|
236 |
if __name__ == "__main__":
|
|
|
4 |
import numpy as np
|
5 |
from sklearn.metrics.pairwise import euclidean_distances
|
6 |
import random
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
import plotly.express as px
|
9 |
|
10 |
model = joblib.load("churn_model.pkl")
|
11 |
model_features = joblib.load("model_features.pkl")
|
|
|
162 |
input_df = pd.DataFrame([[input_dict[col] for col in model_features]], columns=model_features)
|
163 |
prediction = model.predict_proba(input_df)[0][1]
|
164 |
score = round(prediction * 100, 2)
|
165 |
+
|
166 |
+
# Create gauge chart for churn risk
|
167 |
+
fig_gauge = go.Figure(go.Indicator(
|
168 |
+
mode = "gauge+number",
|
169 |
+
value = score,
|
170 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
171 |
+
title = {'text': "Churn Riski"},
|
172 |
+
gauge = {
|
173 |
+
'axis': {'range': [0, 100]},
|
174 |
+
'bar': {'color': "darkblue"},
|
175 |
+
'steps': [
|
176 |
+
{'range': [0, 30], 'color': "lightgreen"},
|
177 |
+
{'range': [30, 70], 'color': "yellow"},
|
178 |
+
{'range': [70, 100], 'color': "red"}
|
179 |
+
],
|
180 |
+
'threshold': {
|
181 |
+
'line': {'color': "red", 'width': 4},
|
182 |
+
'thickness': 0.75,
|
183 |
+
'value': 50
|
184 |
+
}
|
185 |
+
}
|
186 |
+
))
|
187 |
+
|
188 |
+
# Create pie chart for probability distribution
|
189 |
+
fig_pie = px.pie(
|
190 |
+
values=[score, 100-score],
|
191 |
+
names=['Churn Riski', 'Kalma Olasılığı'],
|
192 |
+
title='Müşteri Durumu Dağılımı',
|
193 |
+
color_discrete_sequence=['red', 'green']
|
194 |
+
)
|
195 |
+
|
196 |
if score >= 50:
|
197 |
comment = "Müşteri Kaybedilebilir."
|
198 |
else:
|
199 |
comment = "Müşteri Kayıp Riski Taşımıyor."
|
200 |
result = f"Churn Riski: %{score} — {comment}"
|
201 |
+
|
202 |
# Vector similarity
|
203 |
similar_customers = find_similar_customers_vector(input_df.values[0], n=5)
|
204 |
+
return result, fig_gauge, fig_pie, similar_customers
|
205 |
|
206 |
# Define options for dropdowns (Turkish values)
|
207 |
phone_service_options = ["Evet", "Hayır"]
|
|
|
248 |
with gr.Row():
|
249 |
Contract = gr.Dropdown(contract_options, label="Sözleşme (Contract)")
|
250 |
PaymentMethod = gr.Dropdown(payment_method_options, label="Ödeme Yöntemi (PaymentMethod)")
|
251 |
+
|
252 |
autofill_btn = gr.Button("Rastgele Müşteri ile Doldur")
|
253 |
submit_btn = gr.Button("Tahmin Et")
|
254 |
+
|
255 |
+
with gr.Row():
|
256 |
+
output = gr.Textbox(label="Sonuç")
|
257 |
+
|
258 |
+
with gr.Row():
|
259 |
+
gauge_plot = gr.Plot(label="Churn Risk Gauge")
|
260 |
+
pie_plot = gr.Plot(label="Probability Distribution")
|
261 |
+
|
262 |
similar_customers_table = gr.Dataframe(label="Benzer Müşteriler (İlk 5)")
|
263 |
+
|
264 |
autofill_btn.click(
|
265 |
autofill_random_customer,
|
266 |
inputs=[],
|
|
|
273 |
inputs=[tenure, monthly, total, PhoneService, gender, SeniorCitizen, Partner, Dependents, PaperlessBilling,
|
274 |
MultipleLines, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport,
|
275 |
StreamingTV, StreamingMovies, Contract, PaymentMethod],
|
276 |
+
outputs=[output, gauge_plot, pie_plot, similar_customers_table]
|
277 |
)
|
278 |
|
279 |
if __name__ == "__main__":
|