oberbics commited on
Commit
7778425
·
verified ·
1 Parent(s): a90358f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -2
app.py CHANGED
@@ -16,6 +16,10 @@ import string
16
  import spaces
17
  from transformers import AutoModelForCausalLM, AutoTokenizer
18
  import torch
 
 
 
 
19
 
20
  warnings.filterwarnings("ignore")
21
 
@@ -75,8 +79,17 @@ class SafeGeocoder:
75
  self.cache[location] = None
76
  return None
77
 
 
 
78
  def load_model():
79
  global tokenizer, model
 
 
 
 
 
 
 
80
  try:
81
  # Generate a random location and text each time
82
  random_city = random.choice(["Berlin", "Paris", "London", "Tokyo", "Rome", "Madrid"])
@@ -86,7 +99,22 @@ def load_model():
86
 
87
  # Initialize model if not already loaded
88
  if model is None:
89
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  model = AutoModelForCausalLM.from_pretrained(
91
  MODEL_NAME,
92
  torch_dtype=TORCH_DTYPE,
@@ -107,7 +135,6 @@ def load_model():
107
 
108
  except Exception as e:
109
  return f"❌ Fehler beim Laden des Modells: {str(e)}"
110
-
111
  @spaces.GPU
112
  def extract_info(template, text):
113
  global tokenizer, model
 
16
  import spaces
17
  from transformers import AutoModelForCausalLM, AutoTokenizer
18
  import torch
19
+ from transformers import AutoModelForCausalLM, AutoTokenizer
20
+ from transformers import AutoConfig
21
+ import torch
22
+
23
 
24
  warnings.filterwarnings("ignore")
25
 
 
79
  self.cache[location] = None
80
  return None
81
 
82
+
83
+ # Replace the model loading section with this:
84
  def load_model():
85
  global tokenizer, model
86
+ try:
87
+ # First ensure we have the right tokenizer class available
88
+ from transformers import Qwen2Tokenizer
89
+ except ImportError:
90
+ # Fallback to AutoTokenizer if specific import fails
91
+ pass
92
+
93
  try:
94
  # Generate a random location and text each time
95
  random_city = random.choice(["Berlin", "Paris", "London", "Tokyo", "Rome", "Madrid"])
 
99
 
100
  # Initialize model if not already loaded
101
  if model is None:
102
+ # Load config first to check for tokenizer class
103
+ config = AutoConfig.from_pretrained(MODEL_NAME, trust_remote_code=True)
104
+
105
+ # Load tokenizer with explicit class if needed
106
+ if hasattr(config, "tokenizer_class"):
107
+ tokenizer = AutoTokenizer.from_pretrained(
108
+ MODEL_NAME,
109
+ trust_remote_code=True,
110
+ tokenizer_class=config.tokenizer_class
111
+ )
112
+ else:
113
+ tokenizer = AutoTokenizer.from_pretrained(
114
+ MODEL_NAME,
115
+ trust_remote_code=True
116
+ )
117
+
118
  model = AutoModelForCausalLM.from_pretrained(
119
  MODEL_NAME,
120
  torch_dtype=TORCH_DTYPE,
 
135
 
136
  except Exception as e:
137
  return f"❌ Fehler beim Laden des Modells: {str(e)}"
 
138
  @spaces.GPU
139
  def extract_info(template, text):
140
  global tokenizer, model