Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
-
import requests
|
4 |
import os
|
5 |
import pandas as pd
|
6 |
import folium
|
@@ -15,6 +14,8 @@ import tempfile
|
|
15 |
import warnings
|
16 |
import string
|
17 |
import spaces
|
|
|
|
|
18 |
|
19 |
warnings.filterwarnings("ignore")
|
20 |
|
@@ -26,9 +27,16 @@ MAP_TILES = {
|
|
26 |
}
|
27 |
}
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
class SafeGeocoder:
|
34 |
def __init__(self):
|
@@ -42,7 +50,7 @@ class SafeGeocoder:
|
|
42 |
elapsed = current_time - self.last_request
|
43 |
if elapsed < 1.0:
|
44 |
time.sleep(1.0 - elapsed)
|
45 |
-
self.last_request =
|
46 |
|
47 |
def get_coords(self, location: str):
|
48 |
if not location or pd.isna(location):
|
@@ -67,82 +75,59 @@ class SafeGeocoder:
|
|
67 |
self.cache[location] = None
|
68 |
return None
|
69 |
|
70 |
-
# Function to just load the model
|
71 |
-
|
72 |
-
|
73 |
def load_model():
|
|
|
74 |
try:
|
75 |
# Generate a random location and text each time
|
76 |
random_city = random.choice(["Berlin", "Paris", "London", "Tokyo", "Rome", "Madrid"])
|
77 |
random_suffix = ''.join(random.choices(string.ascii_lowercase, k=5))
|
78 |
test_text = f"Test in {random_city}_{random_suffix}."
|
79 |
-
|
80 |
test_template = '{"test_location": ""}'
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
"
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
94 |
-
|
95 |
-
if response.status_code == 503:
|
96 |
-
response_json = response.json()
|
97 |
-
if "error" in response_json and "loading" in response_json["error"]:
|
98 |
-
estimated_time = response_json.get("estimated_time", "unknown")
|
99 |
-
return f"⏳ Modell lädt... (ca. {int(float(estimated_time)) if isinstance(estimated_time, (int, float, str)) else 'unbekannt'} Sekunden)"
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
# Check if response contains the random city we included
|
108 |
-
if "<|output|>" in result_text and random_city in result_text:
|
109 |
-
return "✅ Modell erfolgreich geladen und getestet! Sie können jetzt mit der Extraktion beginnen."
|
110 |
|
111 |
-
|
|
|
|
|
112 |
|
113 |
except Exception as e:
|
114 |
return f"❌ Fehler beim Laden des Modells: {str(e)}"
|
|
|
115 |
@spaces.GPU
|
116 |
-
|
117 |
def extract_info(template, text):
|
|
|
|
|
|
|
|
|
|
|
118 |
try:
|
119 |
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
|
|
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
if response.status_code == 503:
|
132 |
-
response_json = response.json()
|
133 |
-
if "error" in response_json and "loading" in response_json["error"]:
|
134 |
-
estimated_time = response_json.get("estimated_time", "unknown")
|
135 |
-
return f"⏳ Modell lädt... (ca. {int(float(estimated_time)) if isinstance(estimated_time, (int, float, str)) else 'unbekannt'} Sekunden)", "Bitte versuchen Sie es in einigen Minuten erneut oder nutzen Sie den 'Modell laden' Button"
|
136 |
-
|
137 |
-
if response.status_code != 200:
|
138 |
-
return f"❌ API Fehler: {response.status_code}", response.text
|
139 |
-
|
140 |
-
result = response.json()
|
141 |
-
|
142 |
-
if isinstance(result, list) and len(result) > 0:
|
143 |
-
result_text = result[0].get("generated_text", "")
|
144 |
-
else:
|
145 |
-
result_text = str(result)
|
146 |
|
147 |
if "<|output|>" in result_text:
|
148 |
json_text = result_text.split("<|output|>")[1].strip()
|
@@ -152,10 +137,10 @@ def extract_info(template, text):
|
|
152 |
try:
|
153 |
extracted = json.loads(json_text)
|
154 |
formatted = json.dumps(extracted, indent=2)
|
|
|
155 |
except json.JSONDecodeError:
|
156 |
return "❌ JSON Parsing Fehler", json_text
|
157 |
|
158 |
-
return "✅ Erfolgreich extrahiert", formatted
|
159 |
except Exception as e:
|
160 |
return f"❌ Fehler: {str(e)}", "{}"
|
161 |
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
|
|
3 |
import os
|
4 |
import pandas as pd
|
5 |
import folium
|
|
|
14 |
import warnings
|
15 |
import string
|
16 |
import spaces
|
17 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
18 |
+
import torch
|
19 |
|
20 |
warnings.filterwarnings("ignore")
|
21 |
|
|
|
27 |
}
|
28 |
}
|
29 |
|
30 |
+
# Model configuration
|
31 |
+
MODEL_NAME = "numind/NuExtract-1.5-tiny"
|
32 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
+
TORCH_DTYPE = torch.bfloat16 if DEVICE == "cuda" else torch.float32
|
34 |
+
MAX_INPUT_LENGTH = 20000 # For sliding window processing
|
35 |
+
MAX_NEW_TOKENS = 1000
|
36 |
+
|
37 |
+
# Global model variables
|
38 |
+
tokenizer = None
|
39 |
+
model = None
|
40 |
|
41 |
class SafeGeocoder:
|
42 |
def __init__(self):
|
|
|
50 |
elapsed = current_time - self.last_request
|
51 |
if elapsed < 1.0:
|
52 |
time.sleep(1.0 - elapsed)
|
53 |
+
self.last_request = current_time
|
54 |
|
55 |
def get_coords(self, location: str):
|
56 |
if not location or pd.isna(location):
|
|
|
75 |
self.cache[location] = None
|
76 |
return None
|
77 |
|
|
|
|
|
|
|
78 |
def load_model():
|
79 |
+
global tokenizer, model
|
80 |
try:
|
81 |
# Generate a random location and text each time
|
82 |
random_city = random.choice(["Berlin", "Paris", "London", "Tokyo", "Rome", "Madrid"])
|
83 |
random_suffix = ''.join(random.choices(string.ascii_lowercase, k=5))
|
84 |
test_text = f"Test in {random_city}_{random_suffix}."
|
|
|
85 |
test_template = '{"test_location": ""}'
|
86 |
|
87 |
+
# Initialize model if not already loaded
|
88 |
+
if model is None:
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
90 |
+
model = AutoModelForCausalLM.from_pretrained(
|
91 |
+
MODEL_NAME,
|
92 |
+
torch_dtype=TORCH_DTYPE,
|
93 |
+
trust_remote_code=True,
|
94 |
+
device_map="auto"
|
95 |
+
).eval()
|
96 |
+
print(f"✅ Loaded {MODEL_NAME} on {DEVICE}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
# Test the model
|
99 |
+
prompt = f"<|input|>\n### Template:\n{test_template}\n### Text:\n{test_text}\n\n<|output|>"
|
100 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
101 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
102 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
if "<|output|>" in result and random_city in result:
|
105 |
+
return "✅ Modell erfolgreich geladen und getestet! Sie können jetzt mit der Extraktion beginnen."
|
106 |
+
return "⚠️ Modell-Test nicht erfolgreich. Bitte versuchen Sie es erneut."
|
107 |
|
108 |
except Exception as e:
|
109 |
return f"❌ Fehler beim Laden des Modells: {str(e)}"
|
110 |
+
|
111 |
@spaces.GPU
|
|
|
112 |
def extract_info(template, text):
|
113 |
+
global tokenizer, model
|
114 |
+
|
115 |
+
if model is None:
|
116 |
+
return "❌ Modell nicht geladen", "Bitte zuerst das Modell laden (1. Schritt)"
|
117 |
+
|
118 |
try:
|
119 |
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
|
120 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=MAX_INPUT_LENGTH).to(DEVICE)
|
121 |
|
122 |
+
outputs = model.generate(
|
123 |
+
**inputs,
|
124 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
125 |
+
temperature=0.0,
|
126 |
+
do_sample=False,
|
127 |
+
pad_token_id=tokenizer.eos_token_id
|
128 |
+
)
|
129 |
|
130 |
+
result_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
if "<|output|>" in result_text:
|
133 |
json_text = result_text.split("<|output|>")[1].strip()
|
|
|
137 |
try:
|
138 |
extracted = json.loads(json_text)
|
139 |
formatted = json.dumps(extracted, indent=2)
|
140 |
+
return "✅ Erfolgreich extrahiert", formatted
|
141 |
except json.JSONDecodeError:
|
142 |
return "❌ JSON Parsing Fehler", json_text
|
143 |
|
|
|
144 |
except Exception as e:
|
145 |
return f"❌ Fehler: {str(e)}", "{}"
|
146 |
|