Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import json | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from plotly.subplots import make_subplots | |
import os | |
# Load model artifacts | |
def load_model_artifacts(): | |
try: | |
# Load the trained model | |
model = load_model('final_model.h5') | |
# Load the scaler | |
with open('scaler.pkl', 'rb') as f: | |
scaler = pickle.load(f) | |
# Load metadata | |
with open('metadata.json', 'r') as f: | |
metadata = json.load(f) | |
return model, scaler, metadata | |
except Exception as e: | |
raise Exception(f"Error loading model artifacts: {str(e)}") | |
# Initialize model components | |
try: | |
model, scaler, metadata = load_model_artifacts() | |
feature_names = metadata['feature_names'] | |
print(f"โ Model loaded successfully with features: {feature_names}") | |
except Exception as e: | |
print(f"โ Error loading model: {e}") | |
# Fallback values for testing | |
model, scaler, metadata = None, None, {} | |
feature_names = ['Feature_1', 'Feature_2', 'Feature_3', 'Feature_4'] | |
def predict_student_eligibility(*args): | |
""" | |
Predict student eligibility based on input features | |
""" | |
try: | |
if model is None or scaler is None: | |
return "Model not loaded", "N/A", "N/A", create_error_plot() | |
# Create input dictionary from gradio inputs | |
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))} | |
# Convert to DataFrame | |
input_df = pd.DataFrame([input_data]) | |
# Scale the input | |
input_scaled = scaler.transform(input_df) | |
# Reshape for CNN | |
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1) | |
# Make prediction | |
probability = float(model.predict(input_reshaped)[0][0]) | |
prediction = "Eligible" if probability > 0.5 else "Not Eligible" | |
confidence = abs(probability - 0.5) * 2 # Convert to confidence score | |
# Create prediction visualization | |
fig = create_prediction_viz(probability, prediction, input_data) | |
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig | |
except Exception as e: | |
return f"Error: {str(e)}", "N/A", "N/A", create_error_plot() | |
def create_error_plot(): | |
"""Create a simple error plot""" | |
fig = go.Figure() | |
fig.add_annotation( | |
text="Model not available or error occurred", | |
xref="paper", yref="paper", | |
x=0.5, y=0.5, xanchor='center', yanchor='middle', | |
showarrow=False, font=dict(size=20) | |
) | |
fig.update_layout( | |
xaxis={'visible': False}, | |
yaxis={'visible': False}, | |
height=400 | |
) | |
return fig | |
def create_prediction_viz(probability, prediction, input_data): | |
""" | |
Create visualization for prediction results | |
""" | |
try: | |
# Create subplots | |
fig = make_subplots( | |
rows=2, cols=2, | |
subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'), | |
specs=[[{"type": "indicator"}, {"type": "indicator"}], | |
[{"type": "bar"}, {"type": "scatter"}]] | |
) | |
# Prediction probability gauge | |
fig.add_trace( | |
go.Indicator( | |
mode="gauge+number", | |
value=probability, | |
domain={'x': [0, 1], 'y': [0, 1]}, | |
title={'text': "Eligibility Probability"}, | |
gauge={ | |
'axis': {'range': [None, 1]}, | |
'bar': {'color': "darkblue"}, | |
'steps': [ | |
{'range': [0, 0.5], 'color': "lightcoral"}, | |
{'range': [0.5, 1], 'color': "lightgreen"} | |
], | |
'threshold': { | |
'line': {'color': "red", 'width': 4}, | |
'thickness': 0.75, | |
'value': 0.5 | |
} | |
} | |
), | |
row=1, col=1 | |
) | |
# Confidence meter | |
confidence = abs(probability - 0.5) * 2 | |
fig.add_trace( | |
go.Indicator( | |
mode="gauge+number", | |
value=confidence, | |
domain={'x': [0, 1], 'y': [0, 1]}, | |
title={'text': "Prediction Confidence"}, | |
gauge={ | |
'axis': {'range': [None, 1]}, | |
'bar': {'color': "orange"}, | |
'steps': [ | |
{'range': [0, 0.3], 'color': "lightcoral"}, | |
{'range': [0.3, 0.7], 'color': "lightyellow"}, | |
{'range': [0.7, 1], 'color': "lightgreen"} | |
] | |
} | |
), | |
row=1, col=2 | |
) | |
# Input features bar chart | |
features = list(input_data.keys()) | |
values = list(input_data.values()) | |
fig.add_trace( | |
go.Bar(x=features, y=values, name="Input Values", marker_color="skyblue"), | |
row=2, col=1 | |
) | |
# Simple probability visualization | |
fig.add_trace( | |
go.Scatter( | |
x=[0, 1], | |
y=[probability, probability], | |
mode='lines+markers', | |
name="Probability", | |
line=dict(color="red", width=3), | |
marker=dict(size=10) | |
), | |
row=2, col=2 | |
) | |
fig.update_layout( | |
height=800, | |
showlegend=False, | |
title_text="Student Eligibility Prediction Dashboard", | |
title_x=0.5 | |
) | |
return fig | |
except Exception as e: | |
return create_error_plot() | |
def create_model_info(): | |
""" | |
Create model information display | |
""" | |
if metadata: | |
info_html = f""" | |
<div style="padding: 20px; background-color: #f0f2f6; border-radius: 10px; margin: 10px 0;"> | |
<h3>๐ค Model Information</h3> | |
<ul> | |
<li><strong>Model Type:</strong> {metadata.get('model_type', 'CNN')}</li> | |
<li><strong>Test Accuracy:</strong> {metadata.get('performance_metrics', {}).get('test_accuracy', 'N/A')}</li> | |
<li><strong>AUC Score:</strong> {metadata.get('performance_metrics', {}).get('auc_score', 'N/A')}</li> | |
<li><strong>Creation Date:</strong> {metadata.get('creation_date', 'N/A')}</li> | |
<li><strong>Features:</strong> {len(feature_names)} input features</li> | |
</ul> | |
</div> | |
""" | |
else: | |
info_html = """ | |
<div style="padding: 20px; background-color: #ffebee; border-radius: 10px; margin: 10px 0;"> | |
<h3>โ ๏ธ Model Information</h3> | |
<p>Model artifacts not loaded. Please ensure all required files are uploaded.</p> | |
</div> | |
""" | |
return info_html | |
def batch_predict(file): | |
""" | |
Batch prediction from uploaded CSV file | |
""" | |
try: | |
if model is None or scaler is None: | |
return "Model not loaded. Please check if all model files are uploaded.", None | |
if file is None: | |
return "Please upload a CSV file.", None | |
# Read the uploaded file | |
df = pd.read_csv(file.name) | |
# Check if all required features are present | |
missing_features = set(feature_names) - set(df.columns) | |
if missing_features: | |
return f"Missing features: {missing_features}", None | |
# Select only the required features | |
df_features = df[feature_names] | |
# Scale the features | |
df_scaled = scaler.transform(df_features) | |
# Reshape for CNN | |
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1) | |
# Make predictions | |
probabilities = model.predict(df_reshaped).flatten() | |
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities] | |
# Create results dataframe | |
results_df = df_features.copy() | |
results_df['Probability'] = probabilities | |
results_df['Prediction'] = predictions | |
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2 | |
# Save results | |
output_file = "batch_predictions.csv" | |
results_df.to_csv(output_file, index=False) | |
# Create summary statistics | |
eligible_count = sum(1 for p in predictions if p == 'Eligible') | |
not_eligible_count = len(predictions) - eligible_count | |
summary = f"""Batch Prediction Summary: | |
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
๐ Total predictions: {len(results_df)} | |
โ Eligible: {eligible_count} ({eligible_count/len(predictions)*100:.1f}%) | |
โ Not Eligible: {not_eligible_count} ({not_eligible_count/len(predictions)*100:.1f}%) | |
๐ Average Probability: {np.mean(probabilities):.4f} | |
๐ฏ Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f} | |
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
Results saved to: {output_file} | |
""" | |
return summary, output_file | |
except Exception as e: | |
return f"Error processing file: {str(e)}", None | |
# Create Gradio interface | |
with gr.Blocks( | |
theme=gr.themes.Soft(), | |
title="Student Eligibility Prediction", | |
css=""" | |
.gradio-container { | |
max-width: 1200px !important; | |
} | |
.main-header { | |
text-align: center; | |
padding: 20px; | |
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%); | |
color: white; | |
border-radius: 10px; | |
margin-bottom: 20px; | |
} | |
.feature-input { | |
margin: 5px 0; | |
} | |
""" | |
) as demo: | |
# Header | |
gr.HTML(""" | |
<div class="main-header"> | |
<h1>๐ Student Eligibility Prediction System</h1> | |
<p>AI-powered CNN model for predicting student eligibility with advanced analytics</p> | |
</div> | |
""") | |
with gr.Tabs(): | |
# Single Prediction Tab | |
with gr.TabItem("๐ฎ Single Prediction"): | |
gr.Markdown("### Enter student information to predict eligibility") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("#### Input Features") | |
# Create input components dynamically based on features | |
inputs = [] | |
for i, feature in enumerate(feature_names): | |
inputs.append( | |
gr.Number( | |
label=f"๐ {feature}", | |
value=75 + i*5, # Different default values | |
minimum=0, | |
maximum=100, | |
step=0.1, | |
elem_classes=["feature-input"] | |
) | |
) | |
predict_btn = gr.Button( | |
"๐ฎ Predict Eligibility", | |
variant="primary", | |
size="lg", | |
elem_id="predict-btn" | |
) | |
with gr.Column(scale=2): | |
gr.Markdown("#### Prediction Results") | |
with gr.Row(): | |
prediction_output = gr.Textbox(label="๐ฏ Prediction", scale=1) | |
probability_output = gr.Textbox(label="๐ Probability", scale=1) | |
confidence_output = gr.Textbox(label="๐ฏ Confidence", scale=1) | |
prediction_plot = gr.Plot(label="๐ Prediction Visualization") | |
# Model information | |
gr.HTML(create_model_info()) | |
# Batch Prediction Tab | |
with gr.TabItem("๐ Batch Prediction"): | |
gr.Markdown("### Upload a CSV file for batch predictions") | |
gr.Markdown(f"**Required columns:** `{', '.join(feature_names)}`") | |
# Sample CSV format | |
gr.Markdown(""" | |
**Example CSV format:** | |
```csv | |
Feature_1,Feature_2,Feature_3,Feature_4 | |
85,90,75,88 | |
92,78,85,91 | |
``` | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
file_input = gr.File( | |
label="๐ Upload CSV File", | |
file_types=[".csv"], | |
type="file" | |
) | |
batch_predict_btn = gr.Button( | |
"๐ Process Batch", | |
variant="primary", | |
size="lg" | |
) | |
with gr.Column(): | |
batch_output = gr.Textbox( | |
label="๐ Batch Results Summary", | |
lines=15, | |
max_lines=20 | |
) | |
download_file = gr.File(label="โฌ๏ธ Download Results") | |
# Model Analytics Tab | |
with gr.TabItem("๐ Model Analytics"): | |
gr.Markdown("### Model Performance Metrics") | |
if metadata and 'performance_metrics' in metadata: | |
# Performance metrics | |
metrics_data = metadata['performance_metrics'] | |
metrics_df = pd.DataFrame([{ | |
'Metric': k.replace('_', ' ').title(), | |
'Value': f"{v:.4f}" if isinstance(v, float) else str(v) | |
} for k, v in metrics_data.items()]) | |
gr.Dataframe( | |
metrics_df, | |
label="๐ฏ Performance Metrics", | |
headers=['Metric', 'Value'] | |
) | |
else: | |
gr.Markdown("โ ๏ธ **Performance metrics not available**") | |
# Feature information | |
gr.Markdown("### ๐ Model Features") | |
feature_info = pd.DataFrame({ | |
'Feature Name': feature_names, | |
'Index': range(len(feature_names)), | |
'Type': ['Numerical'] * len(feature_names) | |
}) | |
gr.Dataframe(feature_info, label="Feature Information") | |
# Model architecture info | |
if metadata: | |
gr.Markdown("### ๐๏ธ Model Architecture") | |
arch_info = f""" | |
- **Model Type**: {metadata.get('model_type', 'CNN')} | |
- **Input Shape**: {metadata.get('input_shape', 'N/A')} | |
- **Total Features**: {len(feature_names)} | |
- **Output Classes**: {len(metadata.get('target_classes', {}))} | |
""" | |
gr.Markdown(arch_info) | |
# Event handlers | |
predict_btn.click( | |
fn=predict_student_eligibility, | |
inputs=inputs, | |
outputs=[prediction_output, probability_output, confidence_output, prediction_plot] | |
) | |
batch_predict_btn.click( | |
fn=batch_predict, | |
inputs=[file_input], | |
outputs=[batch_output, download_file] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch( | |
share=False, | |
server_name="0.0.0.0", | |
server_port=7860 | |
) |