File size: 11,371 Bytes
022e8a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7fbf77
 
 
 
 
 
 
 
 
 
022e8a2
 
 
f7fbf77
022e8a2
f7fbf77
 
 
022e8a2
 
 
 
 
 
 
 
 
 
f7fbf77
022e8a2
 
 
 
f7fbf77
022e8a2
 
f7fbf77
022e8a2
 
 
f7fbf77
022e8a2
 
 
 
 
 
 
 
 
 
f7fbf77
022e8a2
 
f7fbf77
022e8a2
 
 
f7fbf77
 
 
022e8a2
 
f7fbf77
022e8a2
 
 
f7fbf77
 
022e8a2
f7fbf77
 
 
 
 
 
 
 
 
 
 
 
022e8a2
 
f7fbf77
 
 
 
 
 
 
 
022e8a2
 
f7fbf77
022e8a2
 
 
f7fbf77
022e8a2
 
f7fbf77
 
 
 
022e8a2
 
 
f7fbf77
 
 
022e8a2
 
 
 
 
 
 
f7fbf77
022e8a2
 
 
f7fbf77
022e8a2
 
 
f7fbf77
022e8a2
f7fbf77
022e8a2
 
 
 
 
 
 
 
 
 
f7fbf77
022e8a2
 
 
 
 
 
 
 
 
 
f7fbf77
022e8a2
f7fbf77
022e8a2
 
 
 
f7fbf77
 
 
 
 
 
 
 
022e8a2
 
f7fbf77
 
022e8a2
f7fbf77
 
 
 
 
022e8a2
f7fbf77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
022e8a2
 
f7fbf77
022e8a2
f7fbf77
 
022e8a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7fbf77
022e8a2
 
 
 
f7fbf77
022e8a2
 
 
f7fbf77
022e8a2
 
 
 
 
 
f7fbf77
 
022e8a2
 
f7fbf77
022e8a2
 
 
 
 
 
f7fbf77
022e8a2
 
 
f7fbf77
022e8a2
 
 
 
 
 
 
 
 
 
 
f7fbf77
022e8a2
 
 
 
 
 
 
 
 
 
 
f7fbf77
 
022e8a2
 
 
f7fbf77
022e8a2
 
 
 
 
 
 
 
 
f7fbf77
022e8a2
 
 
 
 
 
 
f7fbf77
022e8a2
 
 
 
 
 
 
 
 
 
 
 
 
 
f7fbf77
022e8a2
 
 
 
 
f7fbf77
022e8a2
 
 
 
 
 
 
 
 
 
 
 
f7fbf77
022e8a2
 
 
 
f7fbf77
022e8a2
 
 
 
 
f7fbf77
022e8a2
 
 
f7fbf77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import {
  // VAD
  AutoModel,

  // LLM
  AutoTokenizer,
  AutoModelForCausalLM,
  TextStreamer,
  InterruptableStoppingCriteria,

  // Speech recognition
  Tensor,
  pipeline,
} from "@huggingface/transformers";

import { KokoroTTS, TextSplitterStream } from "kokoro-js";

import {
  MAX_BUFFER_DURATION,
  INPUT_SAMPLE_RATE,
  SPEECH_THRESHOLD,
  EXIT_THRESHOLD,
  SPEECH_PAD_SAMPLES,
  MAX_NUM_PREV_BUFFERS,
  MIN_SILENCE_DURATION_SAMPLES,
  MIN_SPEECH_DURATION_SAMPLES,
} from "./constants";

// WebGPU availability check - fail fast
if (!navigator.gpu) {
  self.postMessage({ 
    type: "error", 
    error: new Error("WebGPU not supported. This app requires Chrome 113+, Edge 113+, or Chrome Canary with WebGPU enabled.") 
  });
  throw new Error("WebGPU not available");
}

// TTS Configuration
const model_id = "onnx-community/Kokoro-82M-v1.0-ONNX";
let voice;
const tts = await KokoroTTS.from_pretrained(model_id, {
  dtype: "fp16", // Keep fp16 for memory efficiency
  device: "webgpu",
}).catch((error) => {
  self.postMessage({ error: new Error(`TTS loading failed: ${error.message}`) });
  throw error;
});

const device = "webgpu";
self.postMessage({ type: "info", message: `Using device: "${device}"` });
self.postMessage({
  type: "info",
  message: "Loading models...",
  duration: "until_next",
});

// Load VAD model
const silero_vad = await AutoModel.from_pretrained(
  "onnx-community/silero-vad",
  {
    config: { model_type: "custom" },
    dtype: "fp32",
  },
).catch((error) => {
  self.postMessage({ error: new Error(`VAD loading failed: ${error.message}`) });
  throw error;
});

// Whisper configuration
const DEVICE_DTYPE_CONFIGS = {
  webgpu: {
    encoder_model: "fp32",
    decoder_model_merged: "fp32",
  },
  wasm: {
    encoder_model: "fp32",
    decoder_model_merged: "q8",
  },
};

const transcriber = await pipeline(
  "automatic-speech-recognition",
  "onnx-community/whisper-base",
  {
    device,
    dtype: DEVICE_DTYPE_CONFIGS[device],
    // Specify language to avoid warnings
    language: "en",
    task: "transcribe",
  },
).catch((error) => {
  self.postMessage({ error: new Error(`Whisper loading failed: ${error.message}`) });
  throw error;
});

// Warm up the transcriber
await transcriber(new Float32Array(INPUT_SAMPLE_RATE));

// LLM Configuration - Split tokenizer and model sources
const TOKENIZER_MODEL_ID = "Qwen/Qwen3-1.7B"; // Original repo has tokenizer
const ONNX_MODEL_ID = "onnx-community/Qwen3-1.7B-ONNX"; // ONNX weights

// Load tokenizer from original repo
const tokenizer = await AutoTokenizer.from_pretrained(TOKENIZER_MODEL_ID).catch((error) => {
  self.postMessage({ error: new Error(`Tokenizer loading failed: ${error.message}`) });
  throw error;
});

// Load ONNX model weights
const llm = await AutoModelForCausalLM.from_pretrained(ONNX_MODEL_ID, {
  dtype: "q4f16",
  device: "webgpu",
  // Add model-specific config for Qwen3
  model_config: {
    use_cache: true,
    attention_bias: false,
  }
}).catch((error) => {
  self.postMessage({ error: new Error(`LLM loading failed: ${error.message}`) });
  throw error;
});

// System prompt optimized for conversational AI
const SYSTEM_MESSAGE = {
  role: "system",
  content:
    "You're a helpful and conversational voice assistant. Keep your responses short, clear, and casual. Focus on being natural and engaging in conversation.",
};

// Warm up the LLM
await llm.generate({ ...tokenizer("x"), max_new_tokens: 1 });

// Conversation state
let messages = [SYSTEM_MESSAGE];
let past_key_values_cache;
let stopping_criteria;
const MAX_CONTEXT_MESSAGES = 20; // Prevent unbounded memory growth

// Send ready signal with available voices
self.postMessage({
  type: "status",
  status: "ready",
  message: "Ready!",
  voices: tts.voices,
});

// Audio processing state
const BUFFER = new Float32Array(MAX_BUFFER_DURATION * INPUT_SAMPLE_RATE);
let bufferPointer = 0;

// VAD state
const sr = new Tensor("int64", [INPUT_SAMPLE_RATE], []);
let state = new Tensor("float32", new Float32Array(2 * 1 * 128), [2, 1, 128]);

// Recording state
let isRecording = false;
let isPlaying = false;

/**
 * Perform Voice Activity Detection (VAD)
 * @param {Float32Array} buffer The new audio buffer
 * @returns {Promise<boolean>} `true` if the buffer is speech, `false` otherwise.
 */
async function vad(buffer) {
  const input = new Tensor("float32", buffer, [1, buffer.length]);

  const { stateN, output } = await silero_vad({ input, sr, state });
  state = stateN;

  const isSpeech = output.data[0];

  return (
    isSpeech > SPEECH_THRESHOLD ||
    (isRecording && isSpeech >= EXIT_THRESHOLD)
  );
}

/**
 * Handle speech-to-speech pipeline
 * @param {Float32Array} buffer The audio buffer
 * @param {Object} data Additional timing data
 */
const speechToSpeech = async (buffer, data) => {
  isPlaying = true;

  try {
    // 1. Transcribe audio
    const transcription = await transcriber(buffer);
    const text = transcription.text?.trim() || "";
    
    if (!text || text === "[BLANK_AUDIO]") {
      isPlaying = false;
      return;
    }

    // Add user message
    messages.push({ role: "user", content: text });

    // Manage context window
    if (messages.length > MAX_CONTEXT_MESSAGES) {
      messages = [SYSTEM_MESSAGE, ...messages.slice(-(MAX_CONTEXT_MESSAGES - 1))];
      past_key_values_cache = null; // Reset cache when context changes
    }

    // Set up TTS streaming
    const splitter = new TextSplitterStream();
    const stream = tts.stream(splitter, { voice });
    
    // Stream TTS output
    (async () => {
      try {
        for await (const { text, phonemes, audio } of stream) {
          self.postMessage({ type: "output", text, result: audio });
        }
      } catch (error) {
        console.error("TTS streaming error:", error);
      }
    })();

    // 2. Generate LLM response
    const inputs = tokenizer.apply_chat_template(messages, {
      add_generation_prompt: true,
      return_dict: true,
      // Qwen3 specific - disable thinking mode for conversational use
      enable_thinking: false,
    });

    const streamer = new TextStreamer(tokenizer, {
      skip_prompt: true,
      skip_special_tokens: true,
      callback_function: (text) => {
        splitter.push(text);
      },
      token_callback_function: () => {},
    });

    stopping_criteria = new InterruptableStoppingCriteria();
    
    // Generate with appropriate settings for Qwen3
    const { past_key_values, sequences } = await llm.generate({
      ...inputs,
      past_key_values: past_key_values_cache,
      
      // Qwen3 optimal settings for non-thinking mode
      do_sample: true,
      temperature: 0.7,
      top_p: 0.8,
      top_k: 20,
      max_new_tokens: 512, // Keep responses concise for voice
      
      streamer,
      stopping_criteria,
      return_dict_in_generate: true,
      
      // Ensure proper EOS handling for Qwen3
      eos_token_id: [151643, 151645],
      pad_token_id: tokenizer.pad_token_id,
    });
    
    past_key_values_cache = past_key_values;

    // Close the TTS stream
    splitter.close();

    // Decode and store assistant response
    const decoded = tokenizer.batch_decode(
      sequences.slice(null, [inputs.input_ids.dims[1], null]),
      { skip_special_tokens: true },
    );

    messages.push({ role: "assistant", content: decoded[0] });
    
  } catch (error) {
    console.error("Speech-to-speech error:", error);
    self.postMessage({ 
      type: "error", 
      error: new Error(`Processing failed: ${error.message}`) 
    });
  } finally {
    isPlaying = false;
  }
};

// Audio buffer management
let postSpeechSamples = 0;
let prevBuffers = [];

const resetAfterRecording = (offset = 0) => {
  self.postMessage({
    type: "status",
    status: "recording_end",
    message: "Transcribing...",
    duration: "until_next",
  });
  BUFFER.fill(0, offset);
  bufferPointer = offset;
  isRecording = false;
  postSpeechSamples = 0;
};

const dispatchForTranscriptionAndResetAudioBuffer = (overflow) => {
  const now = Date.now();
  const end = now - ((postSpeechSamples + SPEECH_PAD_SAMPLES) / INPUT_SAMPLE_RATE) * 1000;
  const start = end - (bufferPointer / INPUT_SAMPLE_RATE) * 1000;
  const duration = end - start;
  const overflowLength = overflow?.length ?? 0;

  // Prepare padded buffer
  const buffer = BUFFER.slice(0, bufferPointer + SPEECH_PAD_SAMPLES);
  const prevLength = prevBuffers.reduce((acc, b) => acc + b.length, 0);
  const paddedBuffer = new Float32Array(prevLength + buffer.length);
  
  let offset = 0;
  for (const prev of prevBuffers) {
    paddedBuffer.set(prev, offset);
    offset += prev.length;
  }
  paddedBuffer.set(buffer, offset);
  
  // Process speech
  speechToSpeech(paddedBuffer, { start, end, duration });

  // Handle overflow
  if (overflow) {
    BUFFER.set(overflow, 0);
  }
  resetAfterRecording(overflowLength);
};

// Message handler
self.onmessage = async (event) => {
  const { type, buffer } = event.data;

  // Block audio during playback
  if (type === "audio" && isPlaying) return;

  switch (type) {
    case "start_call": {
      const name = tts.voices[voice ?? "af_heart"]?.name ?? "Heart";
      greet(`Hey there, my name is ${name}! How can I help you today?`);
      return;
    }
    case "end_call":
      messages = [SYSTEM_MESSAGE];
      past_key_values_cache = null;
      // Fall through to interrupt
    case "interrupt":
      stopping_criteria?.interrupt();
      return;
    case "set_voice":
      voice = event.data.voice;
      return;
    case "playback_ended":
      isPlaying = false;
      return;
  }

  // Process audio buffer
  const wasRecording = isRecording;
  const isSpeech = await vad(buffer);

  if (!wasRecording && !isSpeech) {
    // Queue non-speech buffers for padding
    if (prevBuffers.length >= MAX_NUM_PREV_BUFFERS) {
      prevBuffers.shift();
    }
    prevBuffers.push(buffer);
    return;
  }

  const remaining = BUFFER.length - bufferPointer;
  if (buffer.length >= remaining) {
    // Buffer overflow - trigger transcription
    BUFFER.set(buffer.subarray(0, remaining), bufferPointer);
    bufferPointer += remaining;

    const overflow = buffer.subarray(remaining);
    dispatchForTranscriptionAndResetAudioBuffer(overflow);
    return;
  } else {
    // Add to buffer
    BUFFER.set(buffer, bufferPointer);
    bufferPointer += buffer.length;
  }

  if (isSpeech) {
    if (!isRecording) {
      self.postMessage({
        type: "status",
        status: "recording_start",
        message: "Listening...",
        duration: "until_next",
      });
    }
    isRecording = true;
    postSpeechSamples = 0;
    return;
  }

  postSpeechSamples += buffer.length;

  // Check for end of speech
  if (postSpeechSamples < MIN_SILENCE_DURATION_SAMPLES) {
    return;
  }

  if (bufferPointer < MIN_SPEECH_DURATION_SAMPLES) {
    resetAfterRecording();
    return;
  }

  dispatchForTranscriptionAndResetAudioBuffer();
};

// Greeting function
function greet(text) {
  isPlaying = true;
  const splitter = new TextSplitterStream();
  const stream = tts.stream(splitter, { voice });
  
  (async () => {
    for await (const { text: chunkText, audio } of stream) {
      self.postMessage({ type: "output", text: chunkText, result: audio });
    }
  })();
  
  splitter.push(text);
  splitter.close();
  messages.push({ role: "assistant", content: text });
}