Spaces:
Running
Running
Update src/worker.js
Browse files- src/worker.js +177 -102
src/worker.js
CHANGED
@@ -26,11 +26,24 @@ import {
|
|
26 |
MIN_SPEECH_DURATION_SAMPLES,
|
27 |
} from "./constants";
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
const model_id = "onnx-community/Kokoro-82M-v1.0-ONNX";
|
30 |
let voice;
|
31 |
const tts = await KokoroTTS.from_pretrained(model_id, {
|
32 |
-
dtype: "
|
33 |
device: "webgpu",
|
|
|
|
|
|
|
34 |
});
|
35 |
|
36 |
const device = "webgpu";
|
@@ -41,18 +54,19 @@ self.postMessage({
|
|
41 |
duration: "until_next",
|
42 |
});
|
43 |
|
44 |
-
// Load
|
45 |
const silero_vad = await AutoModel.from_pretrained(
|
46 |
"onnx-community/silero-vad",
|
47 |
{
|
48 |
config: { model_type: "custom" },
|
49 |
-
dtype: "fp32",
|
50 |
},
|
51 |
).catch((error) => {
|
52 |
-
self.postMessage({ error });
|
53 |
throw error;
|
54 |
});
|
55 |
|
|
|
56 |
const DEVICE_DTYPE_CONFIGS = {
|
57 |
webgpu: {
|
58 |
encoder_model: "fp32",
|
@@ -63,37 +77,66 @@ const DEVICE_DTYPE_CONFIGS = {
|
|
63 |
decoder_model_merged: "q8",
|
64 |
},
|
65 |
};
|
|
|
66 |
const transcriber = await pipeline(
|
67 |
"automatic-speech-recognition",
|
68 |
-
"onnx-community/whisper-base",
|
69 |
{
|
70 |
device,
|
71 |
dtype: DEVICE_DTYPE_CONFIGS[device],
|
|
|
|
|
|
|
72 |
},
|
73 |
).catch((error) => {
|
74 |
-
self.postMessage({ error });
|
75 |
throw error;
|
76 |
});
|
77 |
|
78 |
-
|
|
|
79 |
|
80 |
-
|
81 |
-
const
|
82 |
-
const
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
dtype: "q4f16",
|
84 |
device: "webgpu",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
});
|
86 |
|
|
|
87 |
const SYSTEM_MESSAGE = {
|
88 |
role: "system",
|
89 |
content:
|
90 |
-
"You're a helpful and conversational voice assistant. Keep your responses short, clear, and casual.",
|
91 |
};
|
92 |
-
await llm.generate({ ...tokenizer("x"), max_new_tokens: 1 }); // Compile shaders
|
93 |
|
|
|
|
|
|
|
|
|
94 |
let messages = [SYSTEM_MESSAGE];
|
95 |
let past_key_values_cache;
|
96 |
let stopping_criteria;
|
|
|
|
|
|
|
97 |
self.postMessage({
|
98 |
type: "status",
|
99 |
status: "ready",
|
@@ -101,17 +144,17 @@ self.postMessage({
|
|
101 |
voices: tts.voices,
|
102 |
});
|
103 |
|
104 |
-
//
|
105 |
const BUFFER = new Float32Array(MAX_BUFFER_DURATION * INPUT_SAMPLE_RATE);
|
106 |
let bufferPointer = 0;
|
107 |
|
108 |
-
//
|
109 |
const sr = new Tensor("int64", [INPUT_SAMPLE_RATE], []);
|
110 |
let state = new Tensor("float32", new Float32Array(2 * 1 * 128), [2, 1, 128]);
|
111 |
|
112 |
-
//
|
113 |
let isRecording = false;
|
114 |
-
let isPlaying = false;
|
115 |
|
116 |
/**
|
117 |
* Perform Voice Activity Detection (VAD)
|
@@ -122,86 +165,126 @@ async function vad(buffer) {
|
|
122 |
const input = new Tensor("float32", buffer, [1, buffer.length]);
|
123 |
|
124 |
const { stateN, output } = await silero_vad({ input, sr, state });
|
125 |
-
state = stateN;
|
126 |
|
127 |
const isSpeech = output.data[0];
|
128 |
|
129 |
-
// Use heuristics to determine if the buffer is speech or not
|
130 |
return (
|
131 |
-
// Case 1: We are above the threshold (definitely speech)
|
132 |
isSpeech > SPEECH_THRESHOLD ||
|
133 |
-
// Case 2: We are in the process of recording, and the probability is above the negative (exit) threshold
|
134 |
(isRecording && isSpeech >= EXIT_THRESHOLD)
|
135 |
);
|
136 |
}
|
137 |
|
138 |
/**
|
139 |
-
*
|
140 |
* @param {Float32Array} buffer The audio buffer
|
141 |
-
* @param {Object} data Additional data
|
142 |
*/
|
143 |
const speechToSpeech = async (buffer, data) => {
|
144 |
isPlaying = true;
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
// Set up text-to-speech streaming
|
155 |
-
const splitter = new TextSplitterStream();
|
156 |
-
const stream = tts.stream(splitter, {
|
157 |
-
voice,
|
158 |
-
});
|
159 |
-
(async () => {
|
160 |
-
for await (const { text, phonemes, audio } of stream) {
|
161 |
-
self.postMessage({ type: "output", text, result: audio });
|
162 |
}
|
163 |
-
})();
|
164 |
-
|
165 |
-
// 2. Generate a response using the LLM
|
166 |
-
const inputs = tokenizer.apply_chat_template(messages, {
|
167 |
-
add_generation_prompt: true,
|
168 |
-
return_dict: true,
|
169 |
-
});
|
170 |
-
const streamer = new TextStreamer(tokenizer, {
|
171 |
-
skip_prompt: true,
|
172 |
-
skip_special_tokens: true,
|
173 |
-
callback_function: (text) => {
|
174 |
-
splitter.push(text);
|
175 |
-
},
|
176 |
-
token_callback_function: () => {},
|
177 |
-
});
|
178 |
-
|
179 |
-
stopping_criteria = new InterruptableStoppingCriteria();
|
180 |
-
const { past_key_values, sequences } = await llm.generate({
|
181 |
-
...inputs,
|
182 |
-
past_key_values: past_key_values_cache,
|
183 |
-
|
184 |
-
do_sample: false, // TODO: do_sample: true is bugged (invalid data location on topk sample)
|
185 |
-
max_new_tokens: 1024,
|
186 |
-
streamer,
|
187 |
-
stopping_criteria,
|
188 |
-
return_dict_in_generate: true,
|
189 |
-
});
|
190 |
-
past_key_values_cache = past_key_values;
|
191 |
|
192 |
-
|
193 |
-
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
199 |
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
};
|
202 |
|
203 |
-
//
|
204 |
let postSpeechSamples = 0;
|
|
|
|
|
205 |
const resetAfterRecording = (offset = 0) => {
|
206 |
self.postMessage({
|
207 |
type: "status",
|
@@ -216,39 +299,39 @@ const resetAfterRecording = (offset = 0) => {
|
|
216 |
};
|
217 |
|
218 |
const dispatchForTranscriptionAndResetAudioBuffer = (overflow) => {
|
219 |
-
// Get start and end time of the speech segment, minus the padding
|
220 |
const now = Date.now();
|
221 |
-
const end =
|
222 |
-
now - ((postSpeechSamples + SPEECH_PAD_SAMPLES) / INPUT_SAMPLE_RATE) * 1000;
|
223 |
const start = end - (bufferPointer / INPUT_SAMPLE_RATE) * 1000;
|
224 |
const duration = end - start;
|
225 |
const overflowLength = overflow?.length ?? 0;
|
226 |
|
227 |
-
//
|
228 |
const buffer = BUFFER.slice(0, bufferPointer + SPEECH_PAD_SAMPLES);
|
229 |
-
|
230 |
const prevLength = prevBuffers.reduce((acc, b) => acc + b.length, 0);
|
231 |
const paddedBuffer = new Float32Array(prevLength + buffer.length);
|
|
|
232 |
let offset = 0;
|
233 |
for (const prev of prevBuffers) {
|
234 |
paddedBuffer.set(prev, offset);
|
235 |
offset += prev.length;
|
236 |
}
|
237 |
paddedBuffer.set(buffer, offset);
|
|
|
|
|
238 |
speechToSpeech(paddedBuffer, { start, end, duration });
|
239 |
|
240 |
-
//
|
241 |
if (overflow) {
|
242 |
BUFFER.set(overflow, 0);
|
243 |
}
|
244 |
resetAfterRecording(overflowLength);
|
245 |
};
|
246 |
|
247 |
-
|
248 |
self.onmessage = async (event) => {
|
249 |
const { type, buffer } = event.data;
|
250 |
|
251 |
-
//
|
252 |
if (type === "audio" && isPlaying) return;
|
253 |
|
254 |
switch (type) {
|
@@ -260,6 +343,7 @@ self.onmessage = async (event) => {
|
|
260 |
case "end_call":
|
261 |
messages = [SYSTEM_MESSAGE];
|
262 |
past_key_values_cache = null;
|
|
|
263 |
case "interrupt":
|
264 |
stopping_criteria?.interrupt();
|
265 |
return;
|
@@ -271,15 +355,13 @@ self.onmessage = async (event) => {
|
|
271 |
return;
|
272 |
}
|
273 |
|
274 |
-
|
|
|
275 |
const isSpeech = await vad(buffer);
|
276 |
|
277 |
if (!wasRecording && !isSpeech) {
|
278 |
-
//
|
279 |
-
// so we will probably discard the buffer. So, we insert
|
280 |
-
// into a FIFO queue with maximum size of PREV_BUFFER_SIZE
|
281 |
if (prevBuffers.length >= MAX_NUM_PREV_BUFFERS) {
|
282 |
-
// If the queue is full, we discard the oldest buffer
|
283 |
prevBuffers.shift();
|
284 |
}
|
285 |
prevBuffers.push(buffer);
|
@@ -288,25 +370,21 @@ self.onmessage = async (event) => {
|
|
288 |
|
289 |
const remaining = BUFFER.length - bufferPointer;
|
290 |
if (buffer.length >= remaining) {
|
291 |
-
//
|
292 |
-
// so we perform transcription and copy the overflow to the global buffer
|
293 |
BUFFER.set(buffer.subarray(0, remaining), bufferPointer);
|
294 |
bufferPointer += remaining;
|
295 |
|
296 |
-
// Dispatch the audio buffer
|
297 |
const overflow = buffer.subarray(remaining);
|
298 |
dispatchForTranscriptionAndResetAudioBuffer(overflow);
|
299 |
return;
|
300 |
} else {
|
301 |
-
//
|
302 |
-
// so we copy it to the global buffer
|
303 |
BUFFER.set(buffer, bufferPointer);
|
304 |
bufferPointer += buffer.length;
|
305 |
}
|
306 |
|
307 |
if (isSpeech) {
|
308 |
if (!isRecording) {
|
309 |
-
// Indicate start of recording
|
310 |
self.postMessage({
|
311 |
type: "status",
|
312 |
status: "recording_start",
|
@@ -314,25 +392,19 @@ self.onmessage = async (event) => {
|
|
314 |
duration: "until_next",
|
315 |
});
|
316 |
}
|
317 |
-
// Start or continue recording
|
318 |
isRecording = true;
|
319 |
-
postSpeechSamples = 0;
|
320 |
return;
|
321 |
}
|
322 |
|
323 |
postSpeechSamples += buffer.length;
|
324 |
|
325 |
-
//
|
326 |
-
// So, we check whether we have reached the end of the current audio chunk.
|
327 |
if (postSpeechSamples < MIN_SILENCE_DURATION_SAMPLES) {
|
328 |
-
// There was a short pause, but not long enough to consider the end of a speech chunk
|
329 |
-
// (e.g., the speaker took a breath), so we continue recording
|
330 |
return;
|
331 |
}
|
332 |
|
333 |
if (bufferPointer < MIN_SPEECH_DURATION_SAMPLES) {
|
334 |
-
// The entire buffer (including the new chunk) is smaller than the minimum
|
335 |
-
// duration of a speech chunk, so we can safely discard the buffer.
|
336 |
resetAfterRecording();
|
337 |
return;
|
338 |
}
|
@@ -340,16 +412,19 @@ self.onmessage = async (event) => {
|
|
340 |
dispatchForTranscriptionAndResetAudioBuffer();
|
341 |
};
|
342 |
|
|
|
343 |
function greet(text) {
|
344 |
isPlaying = true;
|
345 |
const splitter = new TextSplitterStream();
|
346 |
const stream = tts.stream(splitter, { voice });
|
|
|
347 |
(async () => {
|
348 |
for await (const { text: chunkText, audio } of stream) {
|
349 |
self.postMessage({ type: "output", text: chunkText, result: audio });
|
350 |
}
|
351 |
})();
|
|
|
352 |
splitter.push(text);
|
353 |
splitter.close();
|
354 |
messages.push({ role: "assistant", content: text });
|
355 |
-
}
|
|
|
26 |
MIN_SPEECH_DURATION_SAMPLES,
|
27 |
} from "./constants";
|
28 |
|
29 |
+
// WebGPU availability check - fail fast
|
30 |
+
if (!navigator.gpu) {
|
31 |
+
self.postMessage({
|
32 |
+
type: "error",
|
33 |
+
error: new Error("WebGPU not supported. This app requires Chrome 113+, Edge 113+, or Chrome Canary with WebGPU enabled.")
|
34 |
+
});
|
35 |
+
throw new Error("WebGPU not available");
|
36 |
+
}
|
37 |
+
|
38 |
+
// TTS Configuration
|
39 |
const model_id = "onnx-community/Kokoro-82M-v1.0-ONNX";
|
40 |
let voice;
|
41 |
const tts = await KokoroTTS.from_pretrained(model_id, {
|
42 |
+
dtype: "fp16", // Keep fp16 for memory efficiency
|
43 |
device: "webgpu",
|
44 |
+
}).catch((error) => {
|
45 |
+
self.postMessage({ error: new Error(`TTS loading failed: ${error.message}`) });
|
46 |
+
throw error;
|
47 |
});
|
48 |
|
49 |
const device = "webgpu";
|
|
|
54 |
duration: "until_next",
|
55 |
});
|
56 |
|
57 |
+
// Load VAD model
|
58 |
const silero_vad = await AutoModel.from_pretrained(
|
59 |
"onnx-community/silero-vad",
|
60 |
{
|
61 |
config: { model_type: "custom" },
|
62 |
+
dtype: "fp32",
|
63 |
},
|
64 |
).catch((error) => {
|
65 |
+
self.postMessage({ error: new Error(`VAD loading failed: ${error.message}`) });
|
66 |
throw error;
|
67 |
});
|
68 |
|
69 |
+
// Whisper configuration
|
70 |
const DEVICE_DTYPE_CONFIGS = {
|
71 |
webgpu: {
|
72 |
encoder_model: "fp32",
|
|
|
77 |
decoder_model_merged: "q8",
|
78 |
},
|
79 |
};
|
80 |
+
|
81 |
const transcriber = await pipeline(
|
82 |
"automatic-speech-recognition",
|
83 |
+
"onnx-community/whisper-base",
|
84 |
{
|
85 |
device,
|
86 |
dtype: DEVICE_DTYPE_CONFIGS[device],
|
87 |
+
// Specify language to avoid warnings
|
88 |
+
language: "en",
|
89 |
+
task: "transcribe",
|
90 |
},
|
91 |
).catch((error) => {
|
92 |
+
self.postMessage({ error: new Error(`Whisper loading failed: ${error.message}`) });
|
93 |
throw error;
|
94 |
});
|
95 |
|
96 |
+
// Warm up the transcriber
|
97 |
+
await transcriber(new Float32Array(INPUT_SAMPLE_RATE));
|
98 |
|
99 |
+
// LLM Configuration - Split tokenizer and model sources
|
100 |
+
const TOKENIZER_MODEL_ID = "Qwen/Qwen3-1.7B"; // Original repo has tokenizer
|
101 |
+
const ONNX_MODEL_ID = "onnx-community/Qwen3-1.7B-ONNX"; // ONNX weights
|
102 |
+
|
103 |
+
// Load tokenizer from original repo
|
104 |
+
const tokenizer = await AutoTokenizer.from_pretrained(TOKENIZER_MODEL_ID).catch((error) => {
|
105 |
+
self.postMessage({ error: new Error(`Tokenizer loading failed: ${error.message}`) });
|
106 |
+
throw error;
|
107 |
+
});
|
108 |
+
|
109 |
+
// Load ONNX model weights
|
110 |
+
const llm = await AutoModelForCausalLM.from_pretrained(ONNX_MODEL_ID, {
|
111 |
dtype: "q4f16",
|
112 |
device: "webgpu",
|
113 |
+
// Add model-specific config for Qwen3
|
114 |
+
model_config: {
|
115 |
+
use_cache: true,
|
116 |
+
attention_bias: false,
|
117 |
+
}
|
118 |
+
}).catch((error) => {
|
119 |
+
self.postMessage({ error: new Error(`LLM loading failed: ${error.message}`) });
|
120 |
+
throw error;
|
121 |
});
|
122 |
|
123 |
+
// System prompt optimized for conversational AI
|
124 |
const SYSTEM_MESSAGE = {
|
125 |
role: "system",
|
126 |
content:
|
127 |
+
"You're a helpful and conversational voice assistant. Keep your responses short, clear, and casual. Focus on being natural and engaging in conversation.",
|
128 |
};
|
|
|
129 |
|
130 |
+
// Warm up the LLM
|
131 |
+
await llm.generate({ ...tokenizer("x"), max_new_tokens: 1 });
|
132 |
+
|
133 |
+
// Conversation state
|
134 |
let messages = [SYSTEM_MESSAGE];
|
135 |
let past_key_values_cache;
|
136 |
let stopping_criteria;
|
137 |
+
const MAX_CONTEXT_MESSAGES = 20; // Prevent unbounded memory growth
|
138 |
+
|
139 |
+
// Send ready signal with available voices
|
140 |
self.postMessage({
|
141 |
type: "status",
|
142 |
status: "ready",
|
|
|
144 |
voices: tts.voices,
|
145 |
});
|
146 |
|
147 |
+
// Audio processing state
|
148 |
const BUFFER = new Float32Array(MAX_BUFFER_DURATION * INPUT_SAMPLE_RATE);
|
149 |
let bufferPointer = 0;
|
150 |
|
151 |
+
// VAD state
|
152 |
const sr = new Tensor("int64", [INPUT_SAMPLE_RATE], []);
|
153 |
let state = new Tensor("float32", new Float32Array(2 * 1 * 128), [2, 1, 128]);
|
154 |
|
155 |
+
// Recording state
|
156 |
let isRecording = false;
|
157 |
+
let isPlaying = false;
|
158 |
|
159 |
/**
|
160 |
* Perform Voice Activity Detection (VAD)
|
|
|
165 |
const input = new Tensor("float32", buffer, [1, buffer.length]);
|
166 |
|
167 |
const { stateN, output } = await silero_vad({ input, sr, state });
|
168 |
+
state = stateN;
|
169 |
|
170 |
const isSpeech = output.data[0];
|
171 |
|
|
|
172 |
return (
|
|
|
173 |
isSpeech > SPEECH_THRESHOLD ||
|
|
|
174 |
(isRecording && isSpeech >= EXIT_THRESHOLD)
|
175 |
);
|
176 |
}
|
177 |
|
178 |
/**
|
179 |
+
* Handle speech-to-speech pipeline
|
180 |
* @param {Float32Array} buffer The audio buffer
|
181 |
+
* @param {Object} data Additional timing data
|
182 |
*/
|
183 |
const speechToSpeech = async (buffer, data) => {
|
184 |
isPlaying = true;
|
185 |
|
186 |
+
try {
|
187 |
+
// 1. Transcribe audio
|
188 |
+
const transcription = await transcriber(buffer);
|
189 |
+
const text = transcription.text?.trim() || "";
|
190 |
+
|
191 |
+
if (!text || text === "[BLANK_AUDIO]") {
|
192 |
+
isPlaying = false;
|
193 |
+
return;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
+
// Add user message
|
197 |
+
messages.push({ role: "user", content: text });
|
198 |
|
199 |
+
// Manage context window
|
200 |
+
if (messages.length > MAX_CONTEXT_MESSAGES) {
|
201 |
+
messages = [SYSTEM_MESSAGE, ...messages.slice(-(MAX_CONTEXT_MESSAGES - 1))];
|
202 |
+
past_key_values_cache = null; // Reset cache when context changes
|
203 |
+
}
|
204 |
|
205 |
+
// Set up TTS streaming
|
206 |
+
const splitter = new TextSplitterStream();
|
207 |
+
const stream = tts.stream(splitter, { voice });
|
208 |
+
|
209 |
+
// Stream TTS output
|
210 |
+
(async () => {
|
211 |
+
try {
|
212 |
+
for await (const { text, phonemes, audio } of stream) {
|
213 |
+
self.postMessage({ type: "output", text, result: audio });
|
214 |
+
}
|
215 |
+
} catch (error) {
|
216 |
+
console.error("TTS streaming error:", error);
|
217 |
+
}
|
218 |
+
})();
|
219 |
+
|
220 |
+
// 2. Generate LLM response
|
221 |
+
const inputs = tokenizer.apply_chat_template(messages, {
|
222 |
+
add_generation_prompt: true,
|
223 |
+
return_dict: true,
|
224 |
+
// Qwen3 specific - disable thinking mode for conversational use
|
225 |
+
enable_thinking: false,
|
226 |
+
});
|
227 |
+
|
228 |
+
const streamer = new TextStreamer(tokenizer, {
|
229 |
+
skip_prompt: true,
|
230 |
+
skip_special_tokens: true,
|
231 |
+
callback_function: (text) => {
|
232 |
+
splitter.push(text);
|
233 |
+
},
|
234 |
+
token_callback_function: () => {},
|
235 |
+
});
|
236 |
+
|
237 |
+
stopping_criteria = new InterruptableStoppingCriteria();
|
238 |
+
|
239 |
+
// Generate with appropriate settings for Qwen3
|
240 |
+
const { past_key_values, sequences } = await llm.generate({
|
241 |
+
...inputs,
|
242 |
+
past_key_values: past_key_values_cache,
|
243 |
+
|
244 |
+
// Qwen3 optimal settings for non-thinking mode
|
245 |
+
do_sample: true,
|
246 |
+
temperature: 0.7,
|
247 |
+
top_p: 0.8,
|
248 |
+
top_k: 20,
|
249 |
+
max_new_tokens: 512, // Keep responses concise for voice
|
250 |
+
|
251 |
+
streamer,
|
252 |
+
stopping_criteria,
|
253 |
+
return_dict_in_generate: true,
|
254 |
+
|
255 |
+
// Ensure proper EOS handling for Qwen3
|
256 |
+
eos_token_id: [151643, 151645],
|
257 |
+
pad_token_id: tokenizer.pad_token_id,
|
258 |
+
});
|
259 |
+
|
260 |
+
past_key_values_cache = past_key_values;
|
261 |
+
|
262 |
+
// Close the TTS stream
|
263 |
+
splitter.close();
|
264 |
+
|
265 |
+
// Decode and store assistant response
|
266 |
+
const decoded = tokenizer.batch_decode(
|
267 |
+
sequences.slice(null, [inputs.input_ids.dims[1], null]),
|
268 |
+
{ skip_special_tokens: true },
|
269 |
+
);
|
270 |
+
|
271 |
+
messages.push({ role: "assistant", content: decoded[0] });
|
272 |
+
|
273 |
+
} catch (error) {
|
274 |
+
console.error("Speech-to-speech error:", error);
|
275 |
+
self.postMessage({
|
276 |
+
type: "error",
|
277 |
+
error: new Error(`Processing failed: ${error.message}`)
|
278 |
+
});
|
279 |
+
} finally {
|
280 |
+
isPlaying = false;
|
281 |
+
}
|
282 |
};
|
283 |
|
284 |
+
// Audio buffer management
|
285 |
let postSpeechSamples = 0;
|
286 |
+
let prevBuffers = [];
|
287 |
+
|
288 |
const resetAfterRecording = (offset = 0) => {
|
289 |
self.postMessage({
|
290 |
type: "status",
|
|
|
299 |
};
|
300 |
|
301 |
const dispatchForTranscriptionAndResetAudioBuffer = (overflow) => {
|
|
|
302 |
const now = Date.now();
|
303 |
+
const end = now - ((postSpeechSamples + SPEECH_PAD_SAMPLES) / INPUT_SAMPLE_RATE) * 1000;
|
|
|
304 |
const start = end - (bufferPointer / INPUT_SAMPLE_RATE) * 1000;
|
305 |
const duration = end - start;
|
306 |
const overflowLength = overflow?.length ?? 0;
|
307 |
|
308 |
+
// Prepare padded buffer
|
309 |
const buffer = BUFFER.slice(0, bufferPointer + SPEECH_PAD_SAMPLES);
|
|
|
310 |
const prevLength = prevBuffers.reduce((acc, b) => acc + b.length, 0);
|
311 |
const paddedBuffer = new Float32Array(prevLength + buffer.length);
|
312 |
+
|
313 |
let offset = 0;
|
314 |
for (const prev of prevBuffers) {
|
315 |
paddedBuffer.set(prev, offset);
|
316 |
offset += prev.length;
|
317 |
}
|
318 |
paddedBuffer.set(buffer, offset);
|
319 |
+
|
320 |
+
// Process speech
|
321 |
speechToSpeech(paddedBuffer, { start, end, duration });
|
322 |
|
323 |
+
// Handle overflow
|
324 |
if (overflow) {
|
325 |
BUFFER.set(overflow, 0);
|
326 |
}
|
327 |
resetAfterRecording(overflowLength);
|
328 |
};
|
329 |
|
330 |
+
// Message handler
|
331 |
self.onmessage = async (event) => {
|
332 |
const { type, buffer } = event.data;
|
333 |
|
334 |
+
// Block audio during playback
|
335 |
if (type === "audio" && isPlaying) return;
|
336 |
|
337 |
switch (type) {
|
|
|
343 |
case "end_call":
|
344 |
messages = [SYSTEM_MESSAGE];
|
345 |
past_key_values_cache = null;
|
346 |
+
// Fall through to interrupt
|
347 |
case "interrupt":
|
348 |
stopping_criteria?.interrupt();
|
349 |
return;
|
|
|
355 |
return;
|
356 |
}
|
357 |
|
358 |
+
// Process audio buffer
|
359 |
+
const wasRecording = isRecording;
|
360 |
const isSpeech = await vad(buffer);
|
361 |
|
362 |
if (!wasRecording && !isSpeech) {
|
363 |
+
// Queue non-speech buffers for padding
|
|
|
|
|
364 |
if (prevBuffers.length >= MAX_NUM_PREV_BUFFERS) {
|
|
|
365 |
prevBuffers.shift();
|
366 |
}
|
367 |
prevBuffers.push(buffer);
|
|
|
370 |
|
371 |
const remaining = BUFFER.length - bufferPointer;
|
372 |
if (buffer.length >= remaining) {
|
373 |
+
// Buffer overflow - trigger transcription
|
|
|
374 |
BUFFER.set(buffer.subarray(0, remaining), bufferPointer);
|
375 |
bufferPointer += remaining;
|
376 |
|
|
|
377 |
const overflow = buffer.subarray(remaining);
|
378 |
dispatchForTranscriptionAndResetAudioBuffer(overflow);
|
379 |
return;
|
380 |
} else {
|
381 |
+
// Add to buffer
|
|
|
382 |
BUFFER.set(buffer, bufferPointer);
|
383 |
bufferPointer += buffer.length;
|
384 |
}
|
385 |
|
386 |
if (isSpeech) {
|
387 |
if (!isRecording) {
|
|
|
388 |
self.postMessage({
|
389 |
type: "status",
|
390 |
status: "recording_start",
|
|
|
392 |
duration: "until_next",
|
393 |
});
|
394 |
}
|
|
|
395 |
isRecording = true;
|
396 |
+
postSpeechSamples = 0;
|
397 |
return;
|
398 |
}
|
399 |
|
400 |
postSpeechSamples += buffer.length;
|
401 |
|
402 |
+
// Check for end of speech
|
|
|
403 |
if (postSpeechSamples < MIN_SILENCE_DURATION_SAMPLES) {
|
|
|
|
|
404 |
return;
|
405 |
}
|
406 |
|
407 |
if (bufferPointer < MIN_SPEECH_DURATION_SAMPLES) {
|
|
|
|
|
408 |
resetAfterRecording();
|
409 |
return;
|
410 |
}
|
|
|
412 |
dispatchForTranscriptionAndResetAudioBuffer();
|
413 |
};
|
414 |
|
415 |
+
// Greeting function
|
416 |
function greet(text) {
|
417 |
isPlaying = true;
|
418 |
const splitter = new TextSplitterStream();
|
419 |
const stream = tts.stream(splitter, { voice });
|
420 |
+
|
421 |
(async () => {
|
422 |
for await (const { text: chunkText, audio } of stream) {
|
423 |
self.postMessage({ type: "output", text: chunkText, result: audio });
|
424 |
}
|
425 |
})();
|
426 |
+
|
427 |
splitter.push(text);
|
428 |
splitter.close();
|
429 |
messages.push({ role: "assistant", content: text });
|
430 |
+
}
|