multimodalart's picture
Update app.py
faa0ef1 verified
import spaces
import gradio as gr
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
import cv2
import os
from diffusers.utils import load_image, check_min_version
from controlnet_flux import FluxControlNetModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
from diffusers.models.attention_processor import Attention
from transformers import AutoProcessor, AutoModelForMaskGeneration, pipeline
from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple
from huggingface_hub import hf_hub_download
import random
device = "cuda" if torch.cuda.is_available() else "cpu"
# --- Helper Dataclasses (Identical to previous version) ---
@dataclass
class BoundingBox:
xmin: int
ymin: int
xmax: int
ymax: int
@property
def xyxy(self) -> List[float]:
return [self.xmin, self.ymin, self.xmax, self.ymax]
@dataclass
class DetectionResult:
score: float
label: str
box: BoundingBox
mask: Optional[np.array] = None
@classmethod
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
return cls(score=detection_dict['score'],
label=detection_dict['label'],
box=BoundingBox(xmin=detection_dict['box']['xmin'],
ymin=detection_dict['box']['ymin'],
xmax=detection_dict['box']['xmax'],
ymax=detection_dict['box']['ymax']))
# --- Helper Functions (Identical to previous version) ---
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return []
largest_contour = max(contours, key=cv2.contourArea)
return largest_contour.reshape(-1, 2).tolist()
def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
mask = np.zeros(image_shape, dtype=np.uint8)
if not polygon:
return mask
pts = np.array(polygon, dtype=np.int32)
cv2.fillPoly(mask, [pts], color=(255,))
return mask
def get_boxes(results: List[DetectionResult]) -> List[List[List[float]]]:
boxes = [result.box.xyxy for result in results]
return [boxes]
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
masks = masks.cpu().float().permute(0, 2, 3, 1).mean(axis=-1)
masks = (masks > 0).int().numpy().astype(np.uint8)
masks = list(masks)
if polygon_refinement:
for idx, mask in enumerate(masks):
shape = mask.shape
polygon = mask_to_polygon(mask)
refined_mask = polygon_to_mask(polygon, shape)
masks[idx] = refined_mask
return masks
def detect(
object_detector, image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None
) -> List[DetectionResult]:
labels = [label if label.endswith(".") else label + "." for label in labels]
results = object_detector(image, candidate_labels=labels, threshold=threshold)
return [DetectionResult.from_dict(result) for result in results]
def segment(
segmentator, processor, image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False
) -> List[DetectionResult]:
if not detection_results:
return []
boxes = get_boxes(detection_results)
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(device)
with torch.no_grad():
outputs = segmentator(**inputs)
masks = processor.post_process_masks(
masks=outputs.pred_masks, original_sizes=inputs.original_sizes, reshaped_input_sizes=inputs.reshaped_input_sizes
)[0]
masks = refine_masks(masks, polygon_refinement)
for detection_result, mask in zip(detection_results, masks):
detection_result.mask = mask
return detection_results
def grounded_segmentation(
detect_pipeline, segmentator, segment_processor, image: Image.Image, labels: List[str],
) -> Tuple[np.ndarray, List[DetectionResult]]:
detections = detect(detect_pipeline, image, labels, threshold=0.3)
detections = segment(segmentator, segment_processor, image, detections, polygon_refinement=True)
return np.array(image), detections
def segment_image(image, object_name, detector, segmentator, seg_processor):
"""
Segments a specific object from an image and returns the segmented object on a white background.
Args:
image (PIL.Image.Image): The input image.
object_name (str): The name of the object to segment.
detector: The object detection pipeline.
segmentator: The mask generation model.
seg_processor: The processor for the mask generation model.
Returns:
PIL.Image.Image: The image with the segmented object on a white background.
Raises:
gr.Error: If the object cannot be segmented.
"""
image_array, detections = grounded_segmentation(detector, segmentator, seg_processor, image, [object_name])
if not detections or detections[0].mask is None:
raise gr.Error(f"Could not segment the subject '{object_name}' in the image. Please try a clearer image or a more specific subject name.")
mask_expanded = np.expand_dims(detections[0].mask / 255, axis=-1)
segment_result = image_array * mask_expanded + np.ones_like(image_array) * (1 - mask_expanded) * 255
return Image.fromarray(segment_result.astype(np.uint8))
def make_diptych(image):
"""
Creates a diptych image by concatenating the input image with a black image of the same size.
Args:
image (PIL.Image.Image): The input image.
Returns:
PIL.Image.Image: The diptych image.
"""
ref_image_np = np.array(image)
diptych_np = np.concatenate([ref_image_np, np.zeros_like(ref_image_np)], axis=1)
return Image.fromarray(diptych_np)
# --- Custom Attention Processor (Identical to previous version) ---
class CustomFluxAttnProcessor2_0:
def __init__(self, height=44, width=88, attn_enforce=1.0):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.height = height
self.width = width
self.num_pixels = height * width
self.step = 0
self.attn_enforce = attn_enforce
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
self.step += 1
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim, head_dim = key.shape[-1], key.shape[-1] // attn.heads
query, key, value = [x.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) for x in [query, key, value]]
if attn.norm_q is not None: query = attn.norm_q(query)
if attn.norm_k is not None: key = attn.norm_k(key)
if encoder_hidden_states is not None:
encoder_q = attn.add_q_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
encoder_k = attn.add_k_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
encoder_v = attn.add_v_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_added_q is not None: encoder_q = attn.norm_added_q(encoder_q)
if attn.norm_added_k is not None: encoder_k = attn.norm_added_k(encoder_k)
query, key, value = [torch.cat([e, x], dim=2) for e, x in zip([encoder_q, encoder_k, encoder_v], [query, key, value])]
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
if self.attn_enforce != 1.0:
attn_probs = (torch.einsum('bhqd,bhkd->bhqk', query, key) * attn.scale).softmax(dim=-1)
img_attn_probs = attn_probs[:, :, -self.num_pixels:, -self.num_pixels:].reshape((batch_size, attn.heads, self.height, self.width, self.height, self.width))
img_attn_probs[:, :, :, self.width//2:, :, :self.width//2] *= self.attn_enforce
img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.num_pixels, self.num_pixels))
attn_probs[:, :, -self.num_pixels:, -self.num_pixels:] = img_attn_probs
hidden_states = torch.einsum('bhqk,bhkd->bhqd', attn_probs, value)
else:
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim).to(query.dtype)
if encoder_hidden_states is not None:
encoder_hs, hs = hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :]
hs = attn.to_out[0](hs)
hs = attn.to_out[1](hs)
encoder_hs = attn.to_add_out(encoder_hs)
return hs, encoder_hs
else:
return hidden_states
# --- Model Loading (executed once at startup) ---
print("--- Loading Models: This may take a few minutes and requires >40GB VRAM ---")
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintingPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16).to(device)
pipe.transformer.to(torch.bfloat16)
pipe.controlnet.to(torch.bfloat16)
base_attn_procs = pipe.transformer.attn_processors.copy()
print("Loading segmentation models...")
detector_id, segmenter_id = "IDEA-Research/grounding-dino-tiny", "facebook/sam-vit-base"
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(device)
segment_processor = AutoProcessor.from_pretrained(segmenter_id)
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=device)
print("--- All models loaded successfully! ---")
def get_duration(
input_image: Image.Image,
subject_name: str,
do_segmentation: bool,
full_prompt: str,
attn_enforce: float,
ctrl_scale: float,
width: int,
height: int,
pixel_offset: int,
num_steps: int,
guidance: float,
real_guidance: float,
seed: int,
randomize_seed: bool,
progress=gr.Progress(track_tqdm=True)
):
"""
Calculates the estimated duration for the Spaces GPU based on image dimensions.
Args:
input_image (PIL.Image.Image): The input reference image.
subject_name (str): Name of the subject for segmentation.
do_segmentation (bool): Whether to perform segmentation.
full_prompt (str): The full text prompt.
attn_enforce (float): Attention enforcement value.
ctrl_scale (float): ControlNet conditioning scale.
width (int): Target width of the generated image.
height (int): Target height of the generated image.
pixel_offset (int): Padding offset in pixels.
num_steps (int): Number of inference steps.
guidance (float): Distilled guidance scale.
real_guidance (float): Real guidance scale.
seed (int): Random seed.
randomize_seed (bool): Whether to randomize the seed.
progress (gr.Progress): Gradio progress tracker.
Returns:
int: Estimated duration in seconds.
"""
if width > 768 or height > 768:
return 210
else:
return 120
@spaces.GPU(duration=get_duration)
def run_diptych_prompting(
input_image: Image.Image,
subject_name: str,
do_segmentation: bool,
full_prompt: str,
attn_enforce: float,
ctrl_scale: float,
width: int,
height: int,
pixel_offset: int,
num_steps: int,
guidance: float,
real_guidance: float,
seed: int,
randomize_seed: bool,
progress=gr.Progress(track_tqdm=True)
):
"""
Runs the diptych prompting image generation process.
Args:
input_image (PIL.Image.Image): The input reference image.
subject_name (str): The name of the subject for segmentation (if `do_segmentation` is True).
do_segmentation (bool): If True, the subject will be segmented from the reference image.
full_prompt (str): The complete text prompt used for image generation.
attn_enforce (float): Controls the attention enforcement in the custom attention processor.
ctrl_scale (float): The conditioning scale for ControlNet.
width (int): The desired width of the final generated image.
height (int): The desired height of the final generated image.
pixel_offset (int): Padding added around the image during diptych creation.
num_steps (int): The number of inference steps for the diffusion process.
guidance (float): The distilled guidance scale for the diffusion process.
real_guidance (float): The real guidance scale for the diffusion process.
seed (int): The random seed for reproducibility.
randomize_seed (bool): If True, a random seed will be used instead of the provided `seed`.
progress (gr.Progress): Gradio progress tracker to update UI during execution.
Returns:
tuple: A tuple containing:
- PIL.Image.Image: The final generated image.
- PIL.Image.Image: The processed reference image (left panel of the diptych).
- PIL.Image.Image: The full diptych image generated by the pipeline.
- str: The final prompt used.
- int: The actual seed used for generation.
Raises:
gr.Error: If a reference image is not uploaded, prompts are empty, or segmentation fails.
"""
if randomize_seed:
actual_seed = random.randint(0, 9223372036854775807)
else:
actual_seed = seed
if input_image is None: raise gr.Error("Please upload a reference image.")
if not full_prompt: raise gr.Error("Full Prompt is empty. Please fill out the prompt fields.")
# 1. Prepare dimensions and reference image
padded_width = width + pixel_offset * 2
padded_height = height + pixel_offset * 2
diptych_size = (padded_width * 2, padded_height)
reference_image = input_image.resize((padded_width, padded_height)).convert("RGB")
# 2. Process reference image based on segmentation flag
progress(0, desc="Preparing reference image...")
if do_segmentation:
if not subject_name:
raise gr.Error("Subject Name is required when 'Do Segmentation' is checked.")
progress(0.05, desc="Segmenting reference image...")
processed_image = segment_image(reference_image, subject_name, object_detector, segmentator, segment_processor)
else:
processed_image = reference_image
# 3. Create diptych and mask
progress(0.2, desc="Creating diptych and mask...")
mask_image = np.concatenate([np.zeros((padded_height, padded_width, 3)), np.ones((padded_height, padded_width, 3)) * 255], axis=1)
mask_image = Image.fromarray(mask_image.astype(np.uint8))
diptych_image_prompt = make_diptych(processed_image)
# 4. Setup Attention Processor
progress(0.3, desc="Setting up attention processors...")
new_attn_procs = base_attn_procs.copy()
for k in new_attn_procs:
new_attn_procs[k] = CustomFluxAttnProcessor2_0(height=padded_height // 16, width=padded_width * 2 // 16, attn_enforce=attn_enforce)
pipe.transformer.set_attn_processor(new_attn_procs)
# 5. Run Inference
progress(0.4, desc="Running diffusion process...")
generator = torch.Generator(device="cuda").manual_seed(actual_seed)
full_diptych_result = pipe(
prompt=full_prompt,
height=diptych_size[1],
width=diptych_size[0],
control_image=diptych_image_prompt,
control_mask=mask_image,
num_inference_steps=num_steps,
generator=generator,
controlnet_conditioning_scale=ctrl_scale,
guidance_scale=guidance,
negative_prompt="",
true_guidance_scale=real_guidance
).images[0]
# 6. Final cropping
progress(0.95, desc="Finalizing image...")
final_image = full_diptych_result.crop((padded_width, 0, padded_width * 2, padded_height))
final_image = final_image.crop((pixel_offset, pixel_offset, padded_width - pixel_offset, padded_height - pixel_offset))
# 7. Return all outputs
return final_image, processed_image, full_diptych_result, full_prompt, actual_seed
# --- Gradio UI Definition ---
css = '''
.gradio-container{max-width: 960px;margin: 0 auto}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.Markdown(
"""
# Diptych Prompting: Zero-Shot Subject-Driven & Style-Driven Image Generation
### Demo for the paper "[Large-Scale Text-to-Image Model with Inpainting is a Zero-Shot Subject-Driven Image Generator](https://diptychprompting.github.io/)"
"""
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Reference Image")
with gr.Group() as subject_driven_group:
subject_name = gr.Textbox(label="Subject Name", placeholder="e.g., a plush bear")
target_prompt = gr.Textbox(label="Target Prompt", placeholder="e.g., riding a skateboard on the moon")
run_button = gr.Button("Generate Image", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
mode = gr.Radio(["Subject-Driven", "Style-Driven (unstable)"], label="Generation Mode", value="Subject-Driven")
with gr.Group(visible=False) as style_driven_group:
original_style_description = gr.Textbox(label="Original Image Description", placeholder="e.g., in watercolor painting style")
do_segmentation = gr.Checkbox(label="Do Segmentation", value=True)
attn_enforce = gr.Slider(minimum=1.0, maximum=2.0, value=1.3, step=0.05, label="Attention Enforcement")
full_prompt = gr.Textbox(label="Full Prompt (Auto-generated, editable)", lines=3)
ctrl_scale = gr.Slider(minimum=0.5, maximum=1.0, value=0.95, step=0.01, label="ControlNet Scale")
num_steps = gr.Slider(minimum=20, maximum=50, value=28, step=1, label="Inference Steps")
guidance = gr.Slider(minimum=1.0, maximum=10.0, value=3.5, step=0.1, label="Distilled Guidance Scale")
real_guidance = gr.Slider(minimum=1.0, maximum=10.0, value=4.5, step=0.1, label="Real Guidance Scale")
width = gr.Slider(minimum=512, maximum=1024, value=768, step=64, label="Image Width")
height = gr.Slider(minimum=512, maximum=1024, value=768, step=64, label="Image Height")
pixel_offset = gr.Slider(minimum=0, maximum=32, value=8, step=1, label="Padding (Pixel Offset)")
seed = gr.Slider(minimum=0, maximum=9223372036854775807, value=42, step=1, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Column(scale=1):
output_image = gr.Image(type="pil", label="Generated Image")
with gr.Accordion("Other Outputs", open=False) as other_outputs_accordion:
processed_ref_image = gr.Image(label="Processed Reference (Left Panel)")
full_diptych_image = gr.Image(label="Full Diptych Output")
final_prompt_used = gr.Textbox(label="Final Prompt Used")
# --- UI Event Handlers ---
def toggle_mode_visibility(mode_choice):
"""
Hides/shows the relevant input textboxes based on the selected mode.
Args:
mode_choice (str): The selected generation mode ("Subject-Driven" or "Style-Driven").
Returns:
tuple: Gradio update objects for `subject_driven_group` and `style_driven_group` visibility.
"""
if mode_choice == "Subject-Driven":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
def update_derived_fields(mode_choice, subject, style_desc, target):
"""
Updates the full prompt and segmentation checkbox based on other inputs.
Args:
mode_choice (str): The selected generation mode ("Subject-Driven" or "Style-Driven").
subject (str): The subject name (relevant for "Subject-Driven" mode).
style_desc (str): The original style description (relevant for "Style-Driven" mode).
target (str): The target prompt.
Returns:
tuple: Gradio update objects for `full_prompt` value and `do_segmentation` checkbox value.
"""
if mode_choice == "Subject-Driven":
prompt = f"A diptych with two side-by-side images of same {subject}. On the left, a photo of {subject}. On the right, replicate this {subject} exactly but as {target}"
return gr.update(value=prompt), gr.update(value=True)
else: # Style-Driven
prompt = f"A diptych with two side-by-side images of same style. On the left, {style_desc}. On the right, replicate this style exactly but as {target}"
return gr.update(value=prompt), gr.update(value=False)
# --- UI Connections ---
# When mode changes, toggle visibility of the specific prompt fields
mode.change(
fn=toggle_mode_visibility,
inputs=mode,
outputs=[subject_driven_group, style_driven_group],
queue=False
)
# A list of all inputs that affect the full prompt or segmentation checkbox
prompt_component_inputs = [mode, subject_name, original_style_description, target_prompt]
# A list of the UI elements that are derived from the above inputs
derived_outputs = [full_prompt, do_segmentation]
# When any prompt component changes, update the derived fields
for component in prompt_component_inputs:
component.change(update_derived_fields, inputs=prompt_component_inputs, outputs=derived_outputs, queue=False, show_progress="hidden")
run_button.click(
fn=run_diptych_prompting,
inputs=[
input_image, subject_name, do_segmentation, full_prompt, attn_enforce,
ctrl_scale, width, height, pixel_offset, num_steps, guidance,
real_guidance, seed, randomize_seed
],
outputs=[output_image, processed_ref_image, full_diptych_image, final_prompt_used, seed]
)
def run_subject_driven_example(input_image, subject_name, target_prompt):
"""
Helper function to run an example for the subject-driven mode.
Args:
input_image (PIL.Image.Image): The input reference image for the example.
subject_name (str): The subject name for the example.
target_prompt (str): The target prompt for the example.
Returns:
tuple: The outputs from `run_diptych_prompting`.
"""
# Construct the full prompt for subject-driven mode
full_prompt = f"A diptych with two side-by-side images of same {subject_name}. On the left, a photo of {subject_name}. On the right, replicate this {subject_name} exactly but as {target_prompt}"
# Call the main function with all arguments, using defaults for subject-driven mode
return run_diptych_prompting(
input_image=input_image,
subject_name=subject_name,
do_segmentation=True,
full_prompt=full_prompt,
attn_enforce=1.3,
ctrl_scale=0.95,
width=768,
height=768,
pixel_offset=8,
num_steps=28,
guidance=3.5,
real_guidance=4.5,
seed=42,
randomize_seed=False,
)
gr.Examples(
examples=[
["./assets/cat_squished.png", "a cat toy", "a cat toy riding a skate"],
["./assets/hf.png", "hugging face logo", "a hugging face logo on a hat"],
["./assets/bear_plushie.jpg", "a bear plushie", "a bear plushie drinking bubble tea"]
],
inputs=[input_image, subject_name, target_prompt],
outputs=[output_image, processed_ref_image, full_diptych_image, final_prompt_used, seed],
fn=run_subject_driven_example,
cache_examples="lazy"
)
if __name__ == "__main__":
demo.launch(share=True, debug=True, mcp_server=True)