Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,099 Bytes
f946f55 7ce70f3 d711647 ff3b4c0 7ce70f3 7a2b253 7ce70f3 7a2b253 7ce70f3 faa0ef1 7ce70f3 faa0ef1 7ce70f3 7a2b253 7ce70f3 350afb8 7ce70f3 350afb8 7ce70f3 37c471e 4397000 7a2b253 37c471e faa0ef1 7a2b253 37c471e 7ce70f3 37c471e 7ce70f3 7a2b253 7ce70f3 faa0ef1 0930d5f 7ce70f3 7a2b253 7ce70f3 7a2b253 7ce70f3 7a2b253 7ce70f3 7a2b253 7ce70f3 7a2b253 7ce70f3 7a2b253 7ce70f3 7a2b253 7ce70f3 0930d5f 7a2b253 7ce70f3 350afb8 7ce70f3 9e4cd22 7ce70f3 7a2b253 7ce70f3 7a2b253 7ce70f3 7a2b253 38835a1 7ce70f3 769bfa6 4743e79 769bfa6 7ce70f3 7a2b253 740146e 7ce70f3 7a2b253 7ce70f3 7a2b253 7ce70f3 7a2b253 7ce70f3 7a2b253 7ce70f3 37c471e 9e4cd22 7ce70f3 0930d5f 7a2b253 7ce70f3 7a2b253 7ce70f3 7a2b253 faa0ef1 7a2b253 faa0ef1 7a2b253 4163f2f 7a2b253 9acd353 7a2b253 faa0ef1 7a2b253 7ce70f3 dfa9384 3157c5b 7ce70f3 9acd353 7a2b253 7ce70f3 faa0ef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
import spaces
import gradio as gr
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
import cv2
import os
from diffusers.utils import load_image, check_min_version
from controlnet_flux import FluxControlNetModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
from diffusers.models.attention_processor import Attention
from transformers import AutoProcessor, AutoModelForMaskGeneration, pipeline
from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple
from huggingface_hub import hf_hub_download
import random
device = "cuda" if torch.cuda.is_available() else "cpu"
# --- Helper Dataclasses (Identical to previous version) ---
@dataclass
class BoundingBox:
xmin: int
ymin: int
xmax: int
ymax: int
@property
def xyxy(self) -> List[float]:
return [self.xmin, self.ymin, self.xmax, self.ymax]
@dataclass
class DetectionResult:
score: float
label: str
box: BoundingBox
mask: Optional[np.array] = None
@classmethod
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
return cls(score=detection_dict['score'],
label=detection_dict['label'],
box=BoundingBox(xmin=detection_dict['box']['xmin'],
ymin=detection_dict['box']['ymin'],
xmax=detection_dict['box']['xmax'],
ymax=detection_dict['box']['ymax']))
# --- Helper Functions (Identical to previous version) ---
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return []
largest_contour = max(contours, key=cv2.contourArea)
return largest_contour.reshape(-1, 2).tolist()
def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
mask = np.zeros(image_shape, dtype=np.uint8)
if not polygon:
return mask
pts = np.array(polygon, dtype=np.int32)
cv2.fillPoly(mask, [pts], color=(255,))
return mask
def get_boxes(results: List[DetectionResult]) -> List[List[List[float]]]:
boxes = [result.box.xyxy for result in results]
return [boxes]
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
masks = masks.cpu().float().permute(0, 2, 3, 1).mean(axis=-1)
masks = (masks > 0).int().numpy().astype(np.uint8)
masks = list(masks)
if polygon_refinement:
for idx, mask in enumerate(masks):
shape = mask.shape
polygon = mask_to_polygon(mask)
refined_mask = polygon_to_mask(polygon, shape)
masks[idx] = refined_mask
return masks
def detect(
object_detector, image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None
) -> List[DetectionResult]:
labels = [label if label.endswith(".") else label + "." for label in labels]
results = object_detector(image, candidate_labels=labels, threshold=threshold)
return [DetectionResult.from_dict(result) for result in results]
def segment(
segmentator, processor, image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False
) -> List[DetectionResult]:
if not detection_results:
return []
boxes = get_boxes(detection_results)
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(device)
with torch.no_grad():
outputs = segmentator(**inputs)
masks = processor.post_process_masks(
masks=outputs.pred_masks, original_sizes=inputs.original_sizes, reshaped_input_sizes=inputs.reshaped_input_sizes
)[0]
masks = refine_masks(masks, polygon_refinement)
for detection_result, mask in zip(detection_results, masks):
detection_result.mask = mask
return detection_results
def grounded_segmentation(
detect_pipeline, segmentator, segment_processor, image: Image.Image, labels: List[str],
) -> Tuple[np.ndarray, List[DetectionResult]]:
detections = detect(detect_pipeline, image, labels, threshold=0.3)
detections = segment(segmentator, segment_processor, image, detections, polygon_refinement=True)
return np.array(image), detections
def segment_image(image, object_name, detector, segmentator, seg_processor):
"""
Segments a specific object from an image and returns the segmented object on a white background.
Args:
image (PIL.Image.Image): The input image.
object_name (str): The name of the object to segment.
detector: The object detection pipeline.
segmentator: The mask generation model.
seg_processor: The processor for the mask generation model.
Returns:
PIL.Image.Image: The image with the segmented object on a white background.
Raises:
gr.Error: If the object cannot be segmented.
"""
image_array, detections = grounded_segmentation(detector, segmentator, seg_processor, image, [object_name])
if not detections or detections[0].mask is None:
raise gr.Error(f"Could not segment the subject '{object_name}' in the image. Please try a clearer image or a more specific subject name.")
mask_expanded = np.expand_dims(detections[0].mask / 255, axis=-1)
segment_result = image_array * mask_expanded + np.ones_like(image_array) * (1 - mask_expanded) * 255
return Image.fromarray(segment_result.astype(np.uint8))
def make_diptych(image):
"""
Creates a diptych image by concatenating the input image with a black image of the same size.
Args:
image (PIL.Image.Image): The input image.
Returns:
PIL.Image.Image: The diptych image.
"""
ref_image_np = np.array(image)
diptych_np = np.concatenate([ref_image_np, np.zeros_like(ref_image_np)], axis=1)
return Image.fromarray(diptych_np)
# --- Custom Attention Processor (Identical to previous version) ---
class CustomFluxAttnProcessor2_0:
def __init__(self, height=44, width=88, attn_enforce=1.0):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.height = height
self.width = width
self.num_pixels = height * width
self.step = 0
self.attn_enforce = attn_enforce
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
self.step += 1
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim, head_dim = key.shape[-1], key.shape[-1] // attn.heads
query, key, value = [x.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) for x in [query, key, value]]
if attn.norm_q is not None: query = attn.norm_q(query)
if attn.norm_k is not None: key = attn.norm_k(key)
if encoder_hidden_states is not None:
encoder_q = attn.add_q_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
encoder_k = attn.add_k_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
encoder_v = attn.add_v_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_added_q is not None: encoder_q = attn.norm_added_q(encoder_q)
if attn.norm_added_k is not None: encoder_k = attn.norm_added_k(encoder_k)
query, key, value = [torch.cat([e, x], dim=2) for e, x in zip([encoder_q, encoder_k, encoder_v], [query, key, value])]
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
if self.attn_enforce != 1.0:
attn_probs = (torch.einsum('bhqd,bhkd->bhqk', query, key) * attn.scale).softmax(dim=-1)
img_attn_probs = attn_probs[:, :, -self.num_pixels:, -self.num_pixels:].reshape((batch_size, attn.heads, self.height, self.width, self.height, self.width))
img_attn_probs[:, :, :, self.width//2:, :, :self.width//2] *= self.attn_enforce
img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.num_pixels, self.num_pixels))
attn_probs[:, :, -self.num_pixels:, -self.num_pixels:] = img_attn_probs
hidden_states = torch.einsum('bhqk,bhkd->bhqd', attn_probs, value)
else:
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim).to(query.dtype)
if encoder_hidden_states is not None:
encoder_hs, hs = hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :]
hs = attn.to_out[0](hs)
hs = attn.to_out[1](hs)
encoder_hs = attn.to_add_out(encoder_hs)
return hs, encoder_hs
else:
return hidden_states
# --- Model Loading (executed once at startup) ---
print("--- Loading Models: This may take a few minutes and requires >40GB VRAM ---")
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintingPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16).to(device)
pipe.transformer.to(torch.bfloat16)
pipe.controlnet.to(torch.bfloat16)
base_attn_procs = pipe.transformer.attn_processors.copy()
print("Loading segmentation models...")
detector_id, segmenter_id = "IDEA-Research/grounding-dino-tiny", "facebook/sam-vit-base"
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(device)
segment_processor = AutoProcessor.from_pretrained(segmenter_id)
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=device)
print("--- All models loaded successfully! ---")
def get_duration(
input_image: Image.Image,
subject_name: str,
do_segmentation: bool,
full_prompt: str,
attn_enforce: float,
ctrl_scale: float,
width: int,
height: int,
pixel_offset: int,
num_steps: int,
guidance: float,
real_guidance: float,
seed: int,
randomize_seed: bool,
progress=gr.Progress(track_tqdm=True)
):
"""
Calculates the estimated duration for the Spaces GPU based on image dimensions.
Args:
input_image (PIL.Image.Image): The input reference image.
subject_name (str): Name of the subject for segmentation.
do_segmentation (bool): Whether to perform segmentation.
full_prompt (str): The full text prompt.
attn_enforce (float): Attention enforcement value.
ctrl_scale (float): ControlNet conditioning scale.
width (int): Target width of the generated image.
height (int): Target height of the generated image.
pixel_offset (int): Padding offset in pixels.
num_steps (int): Number of inference steps.
guidance (float): Distilled guidance scale.
real_guidance (float): Real guidance scale.
seed (int): Random seed.
randomize_seed (bool): Whether to randomize the seed.
progress (gr.Progress): Gradio progress tracker.
Returns:
int: Estimated duration in seconds.
"""
if width > 768 or height > 768:
return 210
else:
return 120
@spaces.GPU(duration=get_duration)
def run_diptych_prompting(
input_image: Image.Image,
subject_name: str,
do_segmentation: bool,
full_prompt: str,
attn_enforce: float,
ctrl_scale: float,
width: int,
height: int,
pixel_offset: int,
num_steps: int,
guidance: float,
real_guidance: float,
seed: int,
randomize_seed: bool,
progress=gr.Progress(track_tqdm=True)
):
"""
Runs the diptych prompting image generation process.
Args:
input_image (PIL.Image.Image): The input reference image.
subject_name (str): The name of the subject for segmentation (if `do_segmentation` is True).
do_segmentation (bool): If True, the subject will be segmented from the reference image.
full_prompt (str): The complete text prompt used for image generation.
attn_enforce (float): Controls the attention enforcement in the custom attention processor.
ctrl_scale (float): The conditioning scale for ControlNet.
width (int): The desired width of the final generated image.
height (int): The desired height of the final generated image.
pixel_offset (int): Padding added around the image during diptych creation.
num_steps (int): The number of inference steps for the diffusion process.
guidance (float): The distilled guidance scale for the diffusion process.
real_guidance (float): The real guidance scale for the diffusion process.
seed (int): The random seed for reproducibility.
randomize_seed (bool): If True, a random seed will be used instead of the provided `seed`.
progress (gr.Progress): Gradio progress tracker to update UI during execution.
Returns:
tuple: A tuple containing:
- PIL.Image.Image: The final generated image.
- PIL.Image.Image: The processed reference image (left panel of the diptych).
- PIL.Image.Image: The full diptych image generated by the pipeline.
- str: The final prompt used.
- int: The actual seed used for generation.
Raises:
gr.Error: If a reference image is not uploaded, prompts are empty, or segmentation fails.
"""
if randomize_seed:
actual_seed = random.randint(0, 9223372036854775807)
else:
actual_seed = seed
if input_image is None: raise gr.Error("Please upload a reference image.")
if not full_prompt: raise gr.Error("Full Prompt is empty. Please fill out the prompt fields.")
# 1. Prepare dimensions and reference image
padded_width = width + pixel_offset * 2
padded_height = height + pixel_offset * 2
diptych_size = (padded_width * 2, padded_height)
reference_image = input_image.resize((padded_width, padded_height)).convert("RGB")
# 2. Process reference image based on segmentation flag
progress(0, desc="Preparing reference image...")
if do_segmentation:
if not subject_name:
raise gr.Error("Subject Name is required when 'Do Segmentation' is checked.")
progress(0.05, desc="Segmenting reference image...")
processed_image = segment_image(reference_image, subject_name, object_detector, segmentator, segment_processor)
else:
processed_image = reference_image
# 3. Create diptych and mask
progress(0.2, desc="Creating diptych and mask...")
mask_image = np.concatenate([np.zeros((padded_height, padded_width, 3)), np.ones((padded_height, padded_width, 3)) * 255], axis=1)
mask_image = Image.fromarray(mask_image.astype(np.uint8))
diptych_image_prompt = make_diptych(processed_image)
# 4. Setup Attention Processor
progress(0.3, desc="Setting up attention processors...")
new_attn_procs = base_attn_procs.copy()
for k in new_attn_procs:
new_attn_procs[k] = CustomFluxAttnProcessor2_0(height=padded_height // 16, width=padded_width * 2 // 16, attn_enforce=attn_enforce)
pipe.transformer.set_attn_processor(new_attn_procs)
# 5. Run Inference
progress(0.4, desc="Running diffusion process...")
generator = torch.Generator(device="cuda").manual_seed(actual_seed)
full_diptych_result = pipe(
prompt=full_prompt,
height=diptych_size[1],
width=diptych_size[0],
control_image=diptych_image_prompt,
control_mask=mask_image,
num_inference_steps=num_steps,
generator=generator,
controlnet_conditioning_scale=ctrl_scale,
guidance_scale=guidance,
negative_prompt="",
true_guidance_scale=real_guidance
).images[0]
# 6. Final cropping
progress(0.95, desc="Finalizing image...")
final_image = full_diptych_result.crop((padded_width, 0, padded_width * 2, padded_height))
final_image = final_image.crop((pixel_offset, pixel_offset, padded_width - pixel_offset, padded_height - pixel_offset))
# 7. Return all outputs
return final_image, processed_image, full_diptych_result, full_prompt, actual_seed
# --- Gradio UI Definition ---
css = '''
.gradio-container{max-width: 960px;margin: 0 auto}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.Markdown(
"""
# Diptych Prompting: Zero-Shot Subject-Driven & Style-Driven Image Generation
### Demo for the paper "[Large-Scale Text-to-Image Model with Inpainting is a Zero-Shot Subject-Driven Image Generator](https://diptychprompting.github.io/)"
"""
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Reference Image")
with gr.Group() as subject_driven_group:
subject_name = gr.Textbox(label="Subject Name", placeholder="e.g., a plush bear")
target_prompt = gr.Textbox(label="Target Prompt", placeholder="e.g., riding a skateboard on the moon")
run_button = gr.Button("Generate Image", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
mode = gr.Radio(["Subject-Driven", "Style-Driven (unstable)"], label="Generation Mode", value="Subject-Driven")
with gr.Group(visible=False) as style_driven_group:
original_style_description = gr.Textbox(label="Original Image Description", placeholder="e.g., in watercolor painting style")
do_segmentation = gr.Checkbox(label="Do Segmentation", value=True)
attn_enforce = gr.Slider(minimum=1.0, maximum=2.0, value=1.3, step=0.05, label="Attention Enforcement")
full_prompt = gr.Textbox(label="Full Prompt (Auto-generated, editable)", lines=3)
ctrl_scale = gr.Slider(minimum=0.5, maximum=1.0, value=0.95, step=0.01, label="ControlNet Scale")
num_steps = gr.Slider(minimum=20, maximum=50, value=28, step=1, label="Inference Steps")
guidance = gr.Slider(minimum=1.0, maximum=10.0, value=3.5, step=0.1, label="Distilled Guidance Scale")
real_guidance = gr.Slider(minimum=1.0, maximum=10.0, value=4.5, step=0.1, label="Real Guidance Scale")
width = gr.Slider(minimum=512, maximum=1024, value=768, step=64, label="Image Width")
height = gr.Slider(minimum=512, maximum=1024, value=768, step=64, label="Image Height")
pixel_offset = gr.Slider(minimum=0, maximum=32, value=8, step=1, label="Padding (Pixel Offset)")
seed = gr.Slider(minimum=0, maximum=9223372036854775807, value=42, step=1, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Column(scale=1):
output_image = gr.Image(type="pil", label="Generated Image")
with gr.Accordion("Other Outputs", open=False) as other_outputs_accordion:
processed_ref_image = gr.Image(label="Processed Reference (Left Panel)")
full_diptych_image = gr.Image(label="Full Diptych Output")
final_prompt_used = gr.Textbox(label="Final Prompt Used")
# --- UI Event Handlers ---
def toggle_mode_visibility(mode_choice):
"""
Hides/shows the relevant input textboxes based on the selected mode.
Args:
mode_choice (str): The selected generation mode ("Subject-Driven" or "Style-Driven").
Returns:
tuple: Gradio update objects for `subject_driven_group` and `style_driven_group` visibility.
"""
if mode_choice == "Subject-Driven":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
def update_derived_fields(mode_choice, subject, style_desc, target):
"""
Updates the full prompt and segmentation checkbox based on other inputs.
Args:
mode_choice (str): The selected generation mode ("Subject-Driven" or "Style-Driven").
subject (str): The subject name (relevant for "Subject-Driven" mode).
style_desc (str): The original style description (relevant for "Style-Driven" mode).
target (str): The target prompt.
Returns:
tuple: Gradio update objects for `full_prompt` value and `do_segmentation` checkbox value.
"""
if mode_choice == "Subject-Driven":
prompt = f"A diptych with two side-by-side images of same {subject}. On the left, a photo of {subject}. On the right, replicate this {subject} exactly but as {target}"
return gr.update(value=prompt), gr.update(value=True)
else: # Style-Driven
prompt = f"A diptych with two side-by-side images of same style. On the left, {style_desc}. On the right, replicate this style exactly but as {target}"
return gr.update(value=prompt), gr.update(value=False)
# --- UI Connections ---
# When mode changes, toggle visibility of the specific prompt fields
mode.change(
fn=toggle_mode_visibility,
inputs=mode,
outputs=[subject_driven_group, style_driven_group],
queue=False
)
# A list of all inputs that affect the full prompt or segmentation checkbox
prompt_component_inputs = [mode, subject_name, original_style_description, target_prompt]
# A list of the UI elements that are derived from the above inputs
derived_outputs = [full_prompt, do_segmentation]
# When any prompt component changes, update the derived fields
for component in prompt_component_inputs:
component.change(update_derived_fields, inputs=prompt_component_inputs, outputs=derived_outputs, queue=False, show_progress="hidden")
run_button.click(
fn=run_diptych_prompting,
inputs=[
input_image, subject_name, do_segmentation, full_prompt, attn_enforce,
ctrl_scale, width, height, pixel_offset, num_steps, guidance,
real_guidance, seed, randomize_seed
],
outputs=[output_image, processed_ref_image, full_diptych_image, final_prompt_used, seed]
)
def run_subject_driven_example(input_image, subject_name, target_prompt):
"""
Helper function to run an example for the subject-driven mode.
Args:
input_image (PIL.Image.Image): The input reference image for the example.
subject_name (str): The subject name for the example.
target_prompt (str): The target prompt for the example.
Returns:
tuple: The outputs from `run_diptych_prompting`.
"""
# Construct the full prompt for subject-driven mode
full_prompt = f"A diptych with two side-by-side images of same {subject_name}. On the left, a photo of {subject_name}. On the right, replicate this {subject_name} exactly but as {target_prompt}"
# Call the main function with all arguments, using defaults for subject-driven mode
return run_diptych_prompting(
input_image=input_image,
subject_name=subject_name,
do_segmentation=True,
full_prompt=full_prompt,
attn_enforce=1.3,
ctrl_scale=0.95,
width=768,
height=768,
pixel_offset=8,
num_steps=28,
guidance=3.5,
real_guidance=4.5,
seed=42,
randomize_seed=False,
)
gr.Examples(
examples=[
["./assets/cat_squished.png", "a cat toy", "a cat toy riding a skate"],
["./assets/hf.png", "hugging face logo", "a hugging face logo on a hat"],
["./assets/bear_plushie.jpg", "a bear plushie", "a bear plushie drinking bubble tea"]
],
inputs=[input_image, subject_name, target_prompt],
outputs=[output_image, processed_ref_image, full_diptych_image, final_prompt_used, seed],
fn=run_subject_driven_example,
cache_examples="lazy"
)
if __name__ == "__main__":
demo.launch(share=True, debug=True, mcp_server=True) |