Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
from typing import List | |
import json | |
import shutil | |
from pathlib import Path | |
from ollama import AsyncClient, ChatResponse, Message | |
from .config import ( | |
MAX_TOOL_CALL_DEPTH, | |
MODEL_NAME, | |
EMBEDDING_MODEL_NAME, | |
NUM_CTX, | |
OLLAMA_HOST, | |
SYSTEM_PROMPT, | |
UPLOAD_DIR, | |
) | |
from .db import ( | |
Conversation, | |
Message as DBMessage, | |
User, | |
_db, | |
init_db, | |
add_document, | |
) | |
from .log import get_logger | |
from .schema import Msg | |
from .tools import execute_terminal, set_vm | |
from .vm import LinuxVM | |
_LOG = get_logger(__name__) | |
class ChatSession: | |
def __init__( | |
self, | |
user: str = "default", | |
session: str = "default", | |
host: str = OLLAMA_HOST, | |
model: str = MODEL_NAME, | |
embedding_model: str = EMBEDDING_MODEL_NAME, | |
) -> None: | |
init_db() | |
self._client = AsyncClient(host=host) | |
self._model = model | |
self._user, _ = User.get_or_create(username=user) | |
self._conversation, _ = Conversation.get_or_create( | |
user=self._user, session_name=session | |
) | |
self._vm = LinuxVM() | |
self._messages: List[Msg] = self._load_history() | |
self._ensure_system_prompt() | |
async def __aenter__(self) -> "ChatSession": | |
self._vm.start() | |
set_vm(self._vm) | |
return self | |
async def __aexit__(self, exc_type, exc, tb) -> None: | |
set_vm(None) | |
self._vm.stop() | |
if not _db.is_closed(): | |
_db.close() | |
def upload_document(self, file_path: str) -> str: | |
"""Save a document for later access inside the VM. | |
The file is copied into ``UPLOAD_DIR`` and recorded in the database. The | |
returned path is the location inside the VM (prefixed with ``/data``). | |
""" | |
src = Path(file_path) | |
if not src.exists(): | |
raise FileNotFoundError(file_path) | |
dest = Path(UPLOAD_DIR) / self._user.username | |
dest.mkdir(parents=True, exist_ok=True) | |
target = dest / src.name | |
shutil.copy(src, target) | |
add_document(self._user.username, str(target), src.name) | |
return f"/data/{self._user.username}/{src.name}" | |
def _ensure_system_prompt(self) -> None: | |
if any(m.get("role") == "system" for m in self._messages): | |
return | |
DBMessage.create( | |
conversation=self._conversation, role="system", content=SYSTEM_PROMPT | |
) | |
self._messages.insert(0, {"role": "system", "content": SYSTEM_PROMPT}) | |
def _load_history(self) -> List[Msg]: | |
messages: List[Msg] = [] | |
for msg in self._conversation.messages.order_by(DBMessage.created_at): | |
if msg.role == "assistant": | |
try: | |
calls = json.loads(msg.content) | |
except json.JSONDecodeError: | |
messages.append({"role": "assistant", "content": msg.content}) | |
else: | |
messages.append( | |
{ | |
"role": "assistant", | |
"tool_calls": [Message.ToolCall(**c) for c in calls], | |
} | |
) | |
elif msg.role == "user": | |
messages.append({"role": "user", "content": msg.content}) | |
else: | |
messages.append({"role": "tool", "content": msg.content}) | |
return messages | |
def _store_assistant_message(conversation: Conversation, message: Message) -> None: | |
"""Persist assistant messages, storing tool calls when present.""" | |
if message.tool_calls: | |
content = json.dumps([c.model_dump() for c in message.tool_calls]) | |
else: | |
content = message.content or "" | |
DBMessage.create(conversation=conversation, role="assistant", content=content) | |
async def ask(self, messages: List[Msg], *, think: bool = True) -> ChatResponse: | |
return await self._client.chat( | |
self._model, | |
messages=messages, | |
think=think, | |
tools=[execute_terminal], | |
options={"num_ctx": NUM_CTX}, | |
) | |
async def _handle_tool_calls( | |
self, | |
messages: List[Msg], | |
response: ChatResponse, | |
conversation: Conversation, | |
depth: int = 0, | |
) -> ChatResponse: | |
if depth >= MAX_TOOL_CALL_DEPTH or not response.message.tool_calls: | |
return response | |
for call in response.message.tool_calls: | |
if call.function.name == "execute_terminal": | |
result = execute_terminal(**call.function.arguments) | |
else: | |
continue | |
messages.append( | |
{ | |
"role": "tool", | |
"name": call.function.name, | |
"content": str(result), | |
} | |
) | |
DBMessage.create( | |
conversation=conversation, | |
role="tool", | |
content=str(result), | |
) | |
nxt = await self.ask(messages, think=True) | |
self._store_assistant_message(conversation, nxt.message) | |
return await self._handle_tool_calls(messages, nxt, conversation, depth + 1) | |
return response | |
async def chat(self, prompt: str) -> str: | |
DBMessage.create(conversation=self._conversation, role="user", content=prompt) | |
self._messages.append({"role": "user", "content": prompt}) | |
response = await self.ask(self._messages) | |
self._messages.append(response.message.model_dump()) | |
self._store_assistant_message(self._conversation, response.message) | |
_LOG.info("Thinking:\n%s", response.message.thinking or "<no thinking trace>") | |
final_resp = await self._handle_tool_calls( | |
self._messages, response, self._conversation | |
) | |
return final_resp.message.content | |