Spaces:
Runtime error
Runtime error
File size: 5,903 Bytes
0e02b97 ec335c4 7a7b1d3 0e02b97 ccb1848 0e02b97 86c5368 f741707 86c5368 7a7b1d3 86c5368 0e02b97 2bae1d8 0e02b97 27b075e f741707 27b075e bedb8e2 0e02b97 bf45c7d 27b075e 2bae1d8 27b075e 86c5368 0e02b97 2bae1d8 0e02b97 bedb8e2 2bae1d8 bedb8e2 7a7b1d3 86c5368 27b075e ec335c4 7a7b1d3 ec335c4 27b075e ec335c4 0e02b97 ecc9e42 4c7374d 0e02b97 bedb8e2 0e02b97 ecc9e42 7bd7366 7a7b1d3 0e02b97 27b075e 0e02b97 27b075e 0e02b97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
from __future__ import annotations
from typing import List
import json
import shutil
from pathlib import Path
from ollama import AsyncClient, ChatResponse, Message
from .config import (
MAX_TOOL_CALL_DEPTH,
MODEL_NAME,
EMBEDDING_MODEL_NAME,
NUM_CTX,
OLLAMA_HOST,
SYSTEM_PROMPT,
UPLOAD_DIR,
)
from .db import (
Conversation,
Message as DBMessage,
User,
_db,
init_db,
add_document,
)
from .log import get_logger
from .schema import Msg
from .tools import execute_terminal, set_vm
from .vm import LinuxVM
_LOG = get_logger(__name__)
class ChatSession:
def __init__(
self,
user: str = "default",
session: str = "default",
host: str = OLLAMA_HOST,
model: str = MODEL_NAME,
embedding_model: str = EMBEDDING_MODEL_NAME,
) -> None:
init_db()
self._client = AsyncClient(host=host)
self._model = model
self._user, _ = User.get_or_create(username=user)
self._conversation, _ = Conversation.get_or_create(
user=self._user, session_name=session
)
self._vm = LinuxVM()
self._messages: List[Msg] = self._load_history()
self._ensure_system_prompt()
async def __aenter__(self) -> "ChatSession":
self._vm.start()
set_vm(self._vm)
return self
async def __aexit__(self, exc_type, exc, tb) -> None:
set_vm(None)
self._vm.stop()
if not _db.is_closed():
_db.close()
def upload_document(self, file_path: str) -> str:
"""Save a document for later access inside the VM.
The file is copied into ``UPLOAD_DIR`` and recorded in the database. The
returned path is the location inside the VM (prefixed with ``/data``).
"""
src = Path(file_path)
if not src.exists():
raise FileNotFoundError(file_path)
dest = Path(UPLOAD_DIR) / self._user.username
dest.mkdir(parents=True, exist_ok=True)
target = dest / src.name
shutil.copy(src, target)
add_document(self._user.username, str(target), src.name)
return f"/data/{self._user.username}/{src.name}"
def _ensure_system_prompt(self) -> None:
if any(m.get("role") == "system" for m in self._messages):
return
DBMessage.create(
conversation=self._conversation, role="system", content=SYSTEM_PROMPT
)
self._messages.insert(0, {"role": "system", "content": SYSTEM_PROMPT})
def _load_history(self) -> List[Msg]:
messages: List[Msg] = []
for msg in self._conversation.messages.order_by(DBMessage.created_at):
if msg.role == "assistant":
try:
calls = json.loads(msg.content)
except json.JSONDecodeError:
messages.append({"role": "assistant", "content": msg.content})
else:
messages.append(
{
"role": "assistant",
"tool_calls": [Message.ToolCall(**c) for c in calls],
}
)
elif msg.role == "user":
messages.append({"role": "user", "content": msg.content})
else:
messages.append({"role": "tool", "content": msg.content})
return messages
@staticmethod
def _store_assistant_message(conversation: Conversation, message: Message) -> None:
"""Persist assistant messages, storing tool calls when present."""
if message.tool_calls:
content = json.dumps([c.model_dump() for c in message.tool_calls])
else:
content = message.content or ""
DBMessage.create(conversation=conversation, role="assistant", content=content)
async def ask(self, messages: List[Msg], *, think: bool = True) -> ChatResponse:
return await self._client.chat(
self._model,
messages=messages,
think=think,
tools=[execute_terminal],
options={"num_ctx": NUM_CTX},
)
async def _handle_tool_calls(
self,
messages: List[Msg],
response: ChatResponse,
conversation: Conversation,
depth: int = 0,
) -> ChatResponse:
if depth >= MAX_TOOL_CALL_DEPTH or not response.message.tool_calls:
return response
for call in response.message.tool_calls:
if call.function.name == "execute_terminal":
result = execute_terminal(**call.function.arguments)
else:
continue
messages.append(
{
"role": "tool",
"name": call.function.name,
"content": str(result),
}
)
DBMessage.create(
conversation=conversation,
role="tool",
content=str(result),
)
nxt = await self.ask(messages, think=True)
self._store_assistant_message(conversation, nxt.message)
return await self._handle_tool_calls(messages, nxt, conversation, depth + 1)
return response
async def chat(self, prompt: str) -> str:
DBMessage.create(conversation=self._conversation, role="user", content=prompt)
self._messages.append({"role": "user", "content": prompt})
response = await self.ask(self._messages)
self._messages.append(response.message.model_dump())
self._store_assistant_message(self._conversation, response.message)
_LOG.info("Thinking:\n%s", response.message.thinking or "<no thinking trace>")
final_resp = await self._handle_tool_calls(
self._messages, response, self._conversation
)
return final_resp.message.content
|