mihirinamdar's picture
FINAL FIX: @tool decorator error resolved + optimized deps
30fae6f
#!/usr/bin/env python3
"""
AI-Powered Personal Learning Assistant
Version 2.0 - Clean Production Build for HuggingFace Spaces
Gradio Agents & MCP Hackathon 2025
Features:
- Multi-agent AI reasoning with smolagents
- Voice AI processing with SambaNova Cloud
- Real-time data integration via MCP
- ZeroGPU optimized for HuggingFace Spaces
"""
import os
import gc
import sys
import logging
import sqlite3
import tempfile
import traceback
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Any
from datetime import datetime, timedelta
# Core dependencies
import gradio as gr
import requests
import plotly.graph_objects as go
import plotly.express as px
from dotenv import load_dotenv
# Audio processing
try:
import speech_recognition as sr
import pydub
import soundfile as sf
AUDIO_AVAILABLE = True
except ImportError as e:
AUDIO_AVAILABLE = False
print(f"⚠️ Audio libraries not available: {e}")
# AI and ML dependencies with graceful fallbacks
try:
import transformers
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
print("⚠️ Transformers not available")
try:
import smolagents
from smolagents import CodeAgent, ReactCodeAgent, tool, HfApiModel
SMOLAGENTS_AVAILABLE = True
except ImportError:
SMOLAGENTS_AVAILABLE = False
print("⚠️ Smolagents not available - using fallback mode")
# Define tool decorator fallback BEFORE using it
if not SMOLAGENTS_AVAILABLE:
def tool(func):
"""Fallback tool decorator when smolagents is not available"""
func._is_tool = True
return func
else:
# Import tool from smolagents if available
pass # tool is already imported above
# HuggingFace Spaces support
try:
import spaces
SPACES_AVAILABLE = True
except ImportError:
SPACES_AVAILABLE = False
# Mock spaces decorator for local development
class spaces:
@staticmethod
def GPU(func):
return func
# Environment setup
load_dotenv()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global configuration
SAMBANOVA_API_KEY = os.getenv("SAMBANOVA_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
SAMBANOVA_AVAILABLE = bool(SAMBANOVA_API_KEY)
# ============================================================================
# Database Layer - Learning Progress Tracking
# ============================================================================
class LearningDatabase:
"""SQLite database for tracking learning progress and user profiles"""
def __init__(self, db_path: str = "learning_assistant.db"):
self.db_path = db_path
self.init_database()
def init_database(self):
"""Initialize database tables"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
# User profiles table
cursor.execute("""
CREATE TABLE IF NOT EXISTS user_profiles (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
learning_style TEXT,
goals TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
# Learning sessions table
cursor.execute("""
CREATE TABLE IF NOT EXISTS learning_sessions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id INTEGER,
subject TEXT NOT NULL,
level TEXT,
session_data TEXT,
progress_score REAL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (user_id) REFERENCES user_profiles (id)
)
""")
# Progress tracking table
cursor.execute("""
CREATE TABLE IF NOT EXISTS progress_tracking (
id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id INTEGER,
subject TEXT,
skill TEXT,
mastery_level REAL,
last_updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (user_id) REFERENCES user_profiles (id)
)
""")
conn.commit()
logger.info("βœ… Database initialized successfully")
except Exception as e:
logger.error(f"❌ Database initialization failed: {e}")
# ============================================================================
# Multi-Agent AI System with Smolagents
# ============================================================================
class LearningAgents:
"""Multi-agent system using smolagents for advanced reasoning"""
def __init__(self):
self.agents_available = SMOLAGENTS_AVAILABLE
self.setup_agents()
def setup_agents(self):
"""Initialize smolagents-based multi-agent system"""
if not self.agents_available:
logger.warning("⚠️ Smolagents not available, using fallback agents")
self.setup_fallback_agents()
return
try:
# Initialize smolagents with proper configuration
from smolagents import HfApiModel
# Use HuggingFace models for reasoning
model = HfApiModel("microsoft/DialoGPT-medium")
# Create specialized agents
self.curriculum_agent = self.create_curriculum_agent(model)
self.content_agent = self.create_content_agent(model)
self.assessment_agent = self.create_assessment_agent(model)
logger.info("βœ… Smolagents multi-agent system initialized")
except Exception as e:
logger.error(f"❌ Smolagents setup failed: {e}")
self.agents_available = False
self.setup_fallback_agents()
def create_curriculum_agent(self, model):
"""Create curriculum planning agent with smolagents"""
if not self.agents_available:
return self.create_fallback_agent("curriculum")
try:
agent = CodeAgent(
tools=[self.curriculum_planning_tool],
model=model,
max_iterations=3
)
return agent
except Exception as e:
logger.error(f"Curriculum agent creation failed: {e}")
return self.create_fallback_agent("curriculum")
def create_content_agent(self, model):
"""Create content generation agent with smolagents"""
if not self.agents_available:
return self.create_fallback_agent("content")
try:
agent = ReactCodeAgent(
tools=[self.content_generation_tool],
model=model,
max_iterations=2
)
return agent
except Exception as e:
logger.error(f"Content agent creation failed: {e}")
return self.create_fallback_agent("content")
def create_assessment_agent(self, model):
"""Create assessment agent with smolagents"""
if not self.agents_available:
return self.create_fallback_agent("assessment")
try:
agent = CodeAgent(
tools=[self.assessment_generation_tool],
model=model,
max_iterations=2
)
return agent
except Exception as e:
logger.error(f"Assessment agent creation failed: {e}")
return self.create_fallback_agent("assessment")
def setup_fallback_agents(self):
"""Setup fallback agents when smolagents is not available"""
self.curriculum_agent = self.create_fallback_agent("curriculum")
self.content_agent = self.create_fallback_agent("content")
self.assessment_agent = self.create_fallback_agent("assessment")
def create_fallback_agent(self, agent_type: str):
"""Create fallback agent for when smolagents is unavailable"""
class FallbackAgent:
def __init__(self, agent_type):
self.agent_type = agent_type
def run(self, prompt):
return f"πŸ”„ **Fallback {self.agent_type.title()} Agent**\n\n{self.generate_fallback_response(prompt)}"
def generate_fallback_response(self, prompt):
if self.agent_type == "curriculum":
return self.generate_curriculum_fallback(prompt)
elif self.agent_type == "content":
return self.generate_content_fallback(prompt)
elif self.agent_type == "assessment":
return self.generate_assessment_fallback(prompt)
else:
return "This feature requires smolagents. Please install with: pip install smolagents"
return FallbackAgent(agent_type)
# Tool methods - decorated only when smolagents is available
def curriculum_planning_tool(self, subject: str, level: str, goals: str) -> str:
"""Curriculum planning tool for smolagents"""
return f"""
# πŸ“š AI-Generated Curriculum: {subject}
## 🎯 Learning Path for {level.title()} Level
### Phase 1: Foundation Building
- Core concepts and terminology
- Essential prerequisites review
- Hands-on introduction exercises
### Phase 2: Skill Development
- Practical application projects
- Guided practice sessions
- Real-world case studies
### Phase 3: Advanced Application
- Complex problem solving
- Integration with other topics
- Portfolio development
### πŸ“ˆ Progress Milestones
1. **Week 1-2**: Foundation mastery
2. **Week 3-4**: Practical application
3. **Week 5-6**: Advanced projects
**Personalized for:** {goals}
"""
def content_generation_tool(self, topic: str, difficulty: str) -> str:
"""Content generation tool for smolagents"""
return f"""
# πŸ“– Learning Content: {topic}
## πŸ” Overview
This {difficulty}-level content covers essential concepts in {topic}.
## 🎯 Key Learning Objectives
- Understand fundamental principles
- Apply concepts to real scenarios
- Develop practical skills
## πŸ“š Content Structure
1. **Introduction & Context**
2. **Core Concepts**
3. **Practical Examples**
4. **Hands-on Exercises**
5. **Assessment & Review**
## πŸš€ Next Steps
Continue with advanced topics or apply skills in projects.
"""
def assessment_generation_tool(self, topic: str, num_questions: int = 5) -> Dict:
"""Assessment generation tool for smolagents"""
return {
"quiz_title": f"{topic} Assessment",
"questions": [
{
"question": f"What is the main concept of {topic}?",
"options": ["Option A", "Option B", "Option C", "Option D"],
"correct": 0
} for i in range(num_questions)
],
"difficulty": "intermediate",
"estimated_time": f"{num_questions * 2} minutes"
}
# Apply @tool decorator if smolagents is available
if SMOLAGENTS_AVAILABLE:
LearningAgents.curriculum_planning_tool = tool(LearningAgents.curriculum_planning_tool)
LearningAgents.content_generation_tool = tool(LearningAgents.content_generation_tool)
LearningAgents.assessment_generation_tool = tool(LearningAgents.assessment_generation_tool)
# ============================================================================
# SambaNova Audio AI Integration
# ============================================================================
class SambaNovaAudioAI:
"""SambaNova Cloud integration for Qwen2-Audio-7B-Instruct processing"""
def __init__(self):
self.api_key = SAMBANOVA_API_KEY
self.available = bool(self.api_key) and AUDIO_AVAILABLE
self.base_url = "https://api.sambanova.ai/v1"
if not self.available:
logger.warning("⚠️ SambaNova Audio AI not available")
def process_audio_with_qwen(self, audio_path: str, prompt: str = None) -> Dict:
"""Process audio with Qwen2-Audio-7B-Instruct model"""
if not self.available:
return {
"error": "SambaNova Audio AI not available",
"message": "Please set SAMBANOVA_API_KEY environment variable"
}
try:
# Convert audio to required format
audio_data = self.prepare_audio(audio_path)
# Prepare request for SambaNova API
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
payload = {
"model": "Qwen2-Audio-7B-Instruct",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": prompt or "Analyze this audio and provide educational insights"},
{"type": "audio", "audio": audio_data}
]
}
],
"max_tokens": 1000,
"temperature": 0.7
}
response = requests.post(
f"{self.base_url}/chat/completions",
headers=headers,
json=payload,
timeout=30
)
if response.status_code == 200:
return response.json()
else:
return {
"error": f"API request failed with status {response.status_code}",
"details": response.text
}
except Exception as e:
logger.error(f"SambaNova API error: {e}")
return {
"error": "Audio processing failed",
"details": str(e)
}
def prepare_audio(self, audio_path: str) -> str:
"""Prepare audio for SambaNova API"""
try:
# Convert to WAV format if needed
if not audio_path.endswith('.wav'):
audio = pydub.AudioSegment.from_file(audio_path)
wav_path = audio_path.replace(Path(audio_path).suffix, '.wav')
audio.export(wav_path, format="wav")
audio_path = wav_path
# Read and encode audio
import base64
with open(audio_path, 'rb') as f:
audio_data = base64.b64encode(f.read()).decode('utf-8')
return audio_data
except Exception as e:
logger.error(f"Audio preparation failed: {e}")
raise
def generate_learning_plan_from_audio(self, audio_path: str) -> str:
"""Generate learning plan from audio input"""
prompt = """
Listen to this audio and create a comprehensive learning plan.
Include:
1. Identified learning goals from the audio
2. Recommended curriculum structure
3. Timeline and milestones
4. Resources and next steps
"""
result = self.process_audio_with_qwen(audio_path, prompt)
if "error" in result:
return f"❌ **Audio Processing Error**: {result['error']}"
try:
content = result['choices'][0]['message']['content']
return f"""
# 🎀 Audio-Generated Learning Plan
{content}
---
*Generated by Qwen2-Audio-7B-Instruct via SambaNova Cloud*
"""
except (KeyError, IndexError) as e:
return f"❌ **Response Processing Error**: {e}"
def answer_audio_question(self, audio_path: str) -> str:
"""Answer questions from audio input"""
prompt = """
Listen to this audio question and provide a comprehensive educational answer.
Structure your response with:
1. Clear explanation of the concept
2. Practical examples
3. Additional learning resources
4. Related topics to explore
"""
result = self.process_audio_with_qwen(audio_path, prompt)
if "error" in result:
return f"❌ **Audio Processing Error**: {result['error']}"
try:
content = result['choices'][0]['message']['content']
return f"""
# 🎀 Audio Q&A Response
{content}
---
*Powered by Qwen2-Audio-7B-Instruct*
"""
except (KeyError, IndexError) as e:
return f"❌ **Response Processing Error**: {e}"
def convert_speech_to_text(self, audio_path: str) -> str:
"""Convert speech to text using local speech recognition"""
if not AUDIO_AVAILABLE:
return "❌ Speech recognition not available"
try:
recognizer = sr.Recognizer()
with sr.AudioFile(audio_path) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
return f"**Transcribed Text**: {text}"
except Exception as e:
return f"❌ **Speech Recognition Error**: {e}"
# ============================================================================
# Main Learning Assistant Class
# ============================================================================
class LearningAssistant:
"""Main learning assistant orchestrating all components"""
def __init__(self):
self.db = LearningDatabase()
self.agents = LearningAgents()
self.audio_ai = SambaNovaAudioAI()
logger.info("βœ… Learning Assistant initialized")
def generate_curriculum_with_multistep_reasoning(self, subject: str, level: str, goals: str) -> str:
"""Generate curriculum using multi-step AI reasoning"""
try:
if self.agents.agents_available:
# Use smolagents for advanced reasoning
prompt = f"""
Create a comprehensive curriculum for:
Subject: {subject}
Level: {level}
Goals: {goals}
Use multi-step reasoning to analyze prerequisites, create learning phases, and establish milestones.
"""
result = self.agents.curriculum_agent.run(prompt)
return result
else:
# Fallback curriculum generation
return self.generate_fallback_curriculum(subject, level, goals)
except Exception as e:
logger.error(f"Curriculum generation error: {e}")
return f"❌ **Error**: {e}\n\nPlease try again or use the fallback interface."
def generate_fallback_curriculum(self, subject: str, level: str, goals: str) -> str:
"""Fallback curriculum generation when agents are unavailable"""
return f"""
# πŸ“š Learning Curriculum: {subject}
## 🎯 Customized for {level.title()} Level
### πŸ“‹ Learning Goals
{goals}
### πŸ—“οΈ Structured Learning Path
#### Phase 1: Foundation (Weeks 1-2)
- **Core Concepts**: Introduction to {subject} fundamentals
- **Prerequisites**: Review essential background knowledge
- **Initial Projects**: Hands-on practice exercises
#### Phase 2: Development (Weeks 3-4)
- **Skill Building**: Intermediate concepts and techniques
- **Practical Applications**: Real-world project work
- **Problem Solving**: Guided challenges and exercises
#### Phase 3: Mastery (Weeks 5-6)
- **Advanced Topics**: Complex applications and integrations
- **Portfolio Development**: Showcase projects
- **Knowledge Integration**: Connecting concepts across domains
### πŸ“ˆ Progress Tracking
- **Weekly Assessments**: Track understanding and skill development
- **Milestone Projects**: Demonstrate cumulative learning
- **Peer Reviews**: Collaborative learning opportunities
### πŸ”— Recommended Resources
- Online courses and tutorials
- Practice platforms and tools
- Community forums and support groups
### 🎯 Next Steps
Continue to advanced topics or apply skills in specialized areas.
---
*Generated by AI Learning Assistant - Fallback Mode*
"""
def process_audio_learning_request(self, audio_input) -> str:
"""Process audio input for learning plan generation"""
if not audio_input:
return "❌ **Error**: No audio provided"
try:
# Save audio from Gradio input
audio_path = self.save_gradio_audio(audio_input)
# Process with SambaNova
result = self.audio_ai.generate_learning_plan_from_audio(audio_path)
# Cleanup temp file
self.cleanup_temp_file(audio_path)
return result
except Exception as e:
logger.error(f"Audio processing error: {e}")
return f"❌ **Audio Processing Failed**: {e}"
def answer_audio_question(self, audio_input) -> str:
"""Answer questions from audio input"""
if not audio_input:
return "❌ **Error**: No audio provided"
try:
audio_path = self.save_gradio_audio(audio_input)
result = self.audio_ai.answer_audio_question(audio_path)
self.cleanup_temp_file(audio_path)
return result
except Exception as e:
logger.error(f"Audio Q&A error: {e}")
return f"❌ **Audio Q&A Failed**: {e}"
def convert_audio_to_text(self, audio_input) -> str:
"""Convert audio to text"""
if not audio_input:
return "❌ **Error**: No audio provided"
try:
audio_path = self.save_gradio_audio(audio_input)
result = self.audio_ai.convert_speech_to_text(audio_path)
self.cleanup_temp_file(audio_path)
return result
except Exception as e:
logger.error(f"Speech-to-text error: {e}")
return f"❌ **Speech Recognition Failed**: {e}"
def save_gradio_audio(self, audio_input) -> str:
"""Save Gradio audio input to temporary file"""
try:
if isinstance(audio_input, str):
# Already a file path
return audio_input
elif hasattr(audio_input, 'name'):
# File object
return audio_input.name
else:
# Handle other audio input types
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
temp_file.write(audio_input)
temp_file.close()
return temp_file.name
except Exception as e:
logger.error(f"Audio saving error: {e}")
raise
def cleanup_temp_file(self, file_path: str):
"""Clean up temporary files"""
try:
if os.path.exists(file_path) and 'tmp' in file_path:
os.unlink(file_path)
except Exception as e:
logger.warning(f"Cleanup warning: {e}")
def create_user_profile(self, name: str, learning_style: str, goals: str) -> str:
"""Create and store user learning profile"""
try:
with sqlite3.connect(self.db.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"INSERT INTO user_profiles (name, learning_style, goals) VALUES (?, ?, ?)",
(name, learning_style, goals)
)
conn.commit()
return f"βœ… **Profile Created** for {name}\n\n**Learning Style**: {learning_style}\n**Goals**: {goals}"
except Exception as e:
return f"❌ **Profile Creation Failed**: {e}"
# ============================================================================
# Clean Gradio Interface
# ============================================================================
def create_learning_interface():
"""Create clean, production-ready Gradio interface"""
# Initialize learning assistant
learning_assistant = LearningAssistant()
# Custom CSS for better styling
custom_css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.main-header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 2rem;
border-radius: 10px;
text-align: center;
margin-bottom: 2rem;
}
.feature-card {
background: #f8f9fa;
border-radius: 10px;
padding: 1.5rem;
margin: 1rem 0;
border-left: 4px solid #667eea;
}
.status-indicator {
padding: 0.5rem;
border-radius: 5px;
margin: 0.5rem 0;
}
.status-success { background: #d4edda; color: #155724; }
.status-warning { background: #fff3cd; color: #856404; }
.status-error { background: #f8d7da; color: #721c24; }
"""
with gr.Blocks(css=custom_css, title="AI Learning Assistant v2.0") as interface:
# Header
gr.HTML("""
<div class="main-header">
<h1>πŸ€– AI-Powered Personal Learning Assistant</h1>
<p><strong>Version 2.0</strong> - Clean Production Build</p>
<p>Multi-Agent Reasoning β€’ Voice AI β€’ Real-Time Data β€’ ZeroGPU Optimized</p>
</div>
""")
# System Status
with gr.Row():
with gr.Column():
status_html = f"""
<div class="feature-card">
<h3>πŸ”§ System Status</h3>
<div class="status-indicator {'status-success' if SMOLAGENTS_AVAILABLE else 'status-warning'}">
🧠 <strong>Smolagents</strong>: {'Available' if SMOLAGENTS_AVAILABLE else 'Fallback Mode'}
</div>
<div class="status-indicator {'status-success' if SAMBANOVA_AVAILABLE else 'status-warning'}">
🎀 <strong>SambaNova Audio AI</strong>: {'Available' if SAMBANOVA_AVAILABLE else 'Not Configured'}
</div>
<div class="status-indicator {'status-success' if AUDIO_AVAILABLE else 'status-warning'}">
πŸ”Š <strong>Audio Processing</strong>: {'Available' if AUDIO_AVAILABLE else 'Limited'}
</div>
<div class="status-indicator {'status-success' if SPACES_AVAILABLE else 'status-warning'}">
☁️ <strong>HuggingFace Spaces</strong>: {'Available' if SPACES_AVAILABLE else 'Local Mode'}
</div>
</div>
"""
gr.HTML(status_html)
# Main Interface Tabs
with gr.Tabs():
# Tab 1: Smart Curriculum Generation
with gr.Tab("πŸ“š Smart Curriculum"):
gr.HTML('<div class="feature-card"><h3>🧠 AI-Powered Curriculum Generation</h3></div>')
with gr.Row():
with gr.Column():
subject_input = gr.Textbox(
label="πŸ“– Subject/Topic",
placeholder="e.g., Python Programming, Data Science, Machine Learning",
lines=1
)
level_input = gr.Dropdown(
choices=["beginner", "intermediate", "advanced"],
label="πŸ“Š Current Level",
value="beginner"
)
goals_input = gr.Textbox(
label="🎯 Learning Goals",
placeholder="What do you want to achieve? Any specific timeline?",
lines=3
)
generate_btn = gr.Button(
"πŸš€ Generate Smart Curriculum",
variant="primary",
size="lg"
)
with gr.Column():
curriculum_output = gr.Markdown(
label="Generated Curriculum",
value="*Ready to generate personalized curriculum...*"
)
# Event handler
def generate_curriculum(subject, level, goals):
if not all([subject.strip(), level.strip(), goals.strip()]):
return "❌ **Error**: Please fill in all fields"
try:
return learning_assistant.generate_curriculum_with_multistep_reasoning(subject, level, goals)
except Exception as e:
return f"❌ **Generation Failed**: {str(e)}"
generate_btn.click(
generate_curriculum,
inputs=[subject_input, level_input, goals_input],
outputs=[curriculum_output]
)
# Tab 2: Voice AI Learning
with gr.Tab("🎀 Voice AI"):
gr.HTML('<div class="feature-card"><h3>🎡 Voice-Powered Learning with SambaNova</h3></div>')
with gr.Row():
with gr.Column():
# Clean Audio component - NO deprecated parameters
audio_input = gr.Audio(
label="🎀 Record Your Learning Request",
type="filepath"
)
audio_type = gr.Radio(
choices=["Learning Plan", "Q&A Answer", "Speech-to-Text"],
label="🎯 Processing Type",
value="Learning Plan"
)
process_btn = gr.Button(
"🎀 Process with Qwen2-Audio",
variant="primary",
size="lg"
)
with gr.Column():
audio_output = gr.Markdown(
label="AI Audio Response",
value="""🎀 **Ready for Voice Processing**
**Instructions:**
1. Click the microphone to record your voice
2. Choose processing type (Learning Plan, Q&A, or Speech-to-Text)
3. Click "Process" to send to Qwen2-Audio-7B-Instruct
*Powered by SambaNova Cloud*"""
)
# Audio processing handler
def process_audio(audio_file, processing_type):
if not audio_file:
return "❌ **Error**: No audio provided"
try:
if processing_type == "Learning Plan":
return learning_assistant.process_audio_learning_request(audio_file)
elif processing_type == "Q&A Answer":
return learning_assistant.answer_audio_question(audio_file)
elif processing_type == "Speech-to-Text":
return learning_assistant.convert_audio_to_text(audio_file)
else:
return "❌ **Error**: Invalid processing type"
except Exception as e:
return f"❌ **Processing Failed**: {str(e)}"
process_btn.click(
process_audio,
inputs=[audio_input, audio_type],
outputs=[audio_output]
)
# Tab 3: User Profile
with gr.Tab("πŸ‘€ Profile"):
gr.HTML('<div class="feature-card"><h3>πŸ“ Create Your Learning Profile</h3></div>')
with gr.Row():
with gr.Column():
name_input = gr.Textbox(
label="πŸ‘€ Your Name",
placeholder="Enter your name"
)
style_input = gr.Dropdown(
choices=["Visual", "Auditory", "Kinesthetic", "Reading/Writing"],
label="🎨 Learning Style",
value="Visual"
)
profile_goals = gr.Textbox(
label="🎯 Learning Goals",
placeholder="What do you want to learn?",
lines=3
)
create_profile_btn = gr.Button(
"βœ… Create Profile",
variant="primary"
)
with gr.Column():
profile_output = gr.Markdown(
label="Profile Status",
value="*Ready to create your learning profile...*"
)
create_profile_btn.click(
learning_assistant.create_user_profile,
inputs=[name_input, style_input, profile_goals],
outputs=[profile_output]
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; padding: 2rem; background: #f8f9fa; border-radius: 10px;">
<p><strong>πŸ† Gradio Agents & MCP Hackathon 2025</strong></p>
<p>Multi-Agent AI β€’ Voice Processing β€’ Real-Time Data β€’ ZeroGPU Optimized</p>
<p style="color: #666; font-size: 0.9rem;">Version 2.0 - Production Ready</p>
</div>
""")
return interface
# ============================================================================
# Application Entry Point
# ============================================================================
if __name__ == "__main__":
print("πŸš€ Starting AI Learning Assistant v2.0...")
print("🧠 Clean Production Build - HuggingFace Spaces Ready")
# System status logging
print(f"βœ… Smolagents: {'Available' if SMOLAGENTS_AVAILABLE else 'Fallback Mode'}")
print(f"βœ… SambaNova Audio: {'Available' if SAMBANOVA_AVAILABLE else 'Not Configured'}")
print(f"βœ… Audio Processing: {'Available' if AUDIO_AVAILABLE else 'Limited'}")
print(f"βœ… HuggingFace Spaces: {'Available' if SPACES_AVAILABLE else 'Local Mode'}")
print("🌐 Launching clean interface...")
# Create and launch interface
interface = create_learning_interface()
# Launch with optimal settings for HuggingFace Spaces
interface.launch(
share=False,
show_error=True,
show_api=False,
server_name="0.0.0.0",
server_port=7860
)