File size: 35,711 Bytes
741a5e5
 
30fae6f
 
741a5e5
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
30fae6f
 
 
 
 
 
 
 
 
 
741a5e5
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
30fae6f
741a5e5
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
 
 
 
 
 
 
 
 
 
 
 
 
741a5e5
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
 
 
 
 
741a5e5
 
30fae6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741a5e5
 
 
 
30fae6f
 
 
 
 
 
 
 
 
 
 
 
741a5e5
 
 
 
30fae6f
741a5e5
30fae6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741a5e5
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
30fae6f
 
 
741a5e5
 
 
 
30fae6f
 
741a5e5
30fae6f
741a5e5
 
 
30fae6f
741a5e5
30fae6f
741a5e5
 
 
 
 
30fae6f
 
741a5e5
 
 
30fae6f
741a5e5
 
30fae6f
741a5e5
30fae6f
741a5e5
 
 
 
 
30fae6f
 
 
741a5e5
30fae6f
741a5e5
 
 
 
 
 
 
30fae6f
 
741a5e5
 
30fae6f
 
 
741a5e5
30fae6f
 
 
 
 
 
741a5e5
 
30fae6f
741a5e5
30fae6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
30fae6f
741a5e5
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
 
741a5e5
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
30fae6f
741a5e5
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
30fae6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741a5e5
 
 
 
 
 
 
30fae6f
741a5e5
30fae6f
 
741a5e5
30fae6f
 
741a5e5
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
30fae6f
741a5e5
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
 
 
 
 
 
 
 
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741a5e5
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
30fae6f
 
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
30fae6f
741a5e5
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
741a5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fae6f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
#!/usr/bin/env python3
"""
AI-Powered Personal Learning Assistant
Version 2.0 - Clean Production Build for HuggingFace Spaces
Gradio Agents & MCP Hackathon 2025

Features:
- Multi-agent AI reasoning with smolagents
- Voice AI processing with SambaNova Cloud
- Real-time data integration via MCP
- ZeroGPU optimized for HuggingFace Spaces
"""

import os
import gc
import sys
import logging
import sqlite3
import tempfile
import traceback
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Any
from datetime import datetime, timedelta

# Core dependencies
import gradio as gr
import requests
import plotly.graph_objects as go
import plotly.express as px
from dotenv import load_dotenv

# Audio processing
try:
    import speech_recognition as sr
    import pydub
    import soundfile as sf
    AUDIO_AVAILABLE = True
except ImportError as e:
    AUDIO_AVAILABLE = False
    print(f"⚠️ Audio libraries not available: {e}")

# AI and ML dependencies with graceful fallbacks
try:
    import transformers
    TRANSFORMERS_AVAILABLE = True
except ImportError:
    TRANSFORMERS_AVAILABLE = False
    print("⚠️ Transformers not available")

try:
    import smolagents
    from smolagents import CodeAgent, ReactCodeAgent, tool, HfApiModel
    SMOLAGENTS_AVAILABLE = True
except ImportError:
    SMOLAGENTS_AVAILABLE = False
    print("⚠️ Smolagents not available - using fallback mode")

# Define tool decorator fallback BEFORE using it
if not SMOLAGENTS_AVAILABLE:
    def tool(func):
        """Fallback tool decorator when smolagents is not available"""
        func._is_tool = True
        return func
else:
    # Import tool from smolagents if available
    pass  # tool is already imported above

# HuggingFace Spaces support
try:
    import spaces
    SPACES_AVAILABLE = True
except ImportError:
    SPACES_AVAILABLE = False
    # Mock spaces decorator for local development
    class spaces:
        @staticmethod
        def GPU(func):
            return func

# Environment setup
load_dotenv()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Global configuration
SAMBANOVA_API_KEY = os.getenv("SAMBANOVA_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
SAMBANOVA_AVAILABLE = bool(SAMBANOVA_API_KEY)

# ============================================================================
# Database Layer - Learning Progress Tracking
# ============================================================================

class LearningDatabase:
    """SQLite database for tracking learning progress and user profiles"""
    
    def __init__(self, db_path: str = "learning_assistant.db"):
        self.db_path = db_path
        self.init_database()
    
    def init_database(self):
        """Initialize database tables"""
        try:
            with sqlite3.connect(self.db_path) as conn:
                cursor = conn.cursor()
                
                # User profiles table
                cursor.execute("""
                    CREATE TABLE IF NOT EXISTS user_profiles (
                        id INTEGER PRIMARY KEY AUTOINCREMENT,
                        name TEXT NOT NULL,
                        learning_style TEXT,
                        goals TEXT,
                        created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
                    )
                """)
                
                # Learning sessions table
                cursor.execute("""
                    CREATE TABLE IF NOT EXISTS learning_sessions (
                        id INTEGER PRIMARY KEY AUTOINCREMENT,
                        user_id INTEGER,
                        subject TEXT NOT NULL,
                        level TEXT,
                        session_data TEXT,
                        progress_score REAL,
                        created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                        FOREIGN KEY (user_id) REFERENCES user_profiles (id)
                    )
                """)
                
                # Progress tracking table
                cursor.execute("""
                    CREATE TABLE IF NOT EXISTS progress_tracking (
                        id INTEGER PRIMARY KEY AUTOINCREMENT,
                        user_id INTEGER,
                        subject TEXT,
                        skill TEXT,
                        mastery_level REAL,
                        last_updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                        FOREIGN KEY (user_id) REFERENCES user_profiles (id)
                    )
                """)
                
                conn.commit()
                logger.info("βœ… Database initialized successfully")
                
        except Exception as e:
            logger.error(f"❌ Database initialization failed: {e}")

# ============================================================================
# Multi-Agent AI System with Smolagents
# ============================================================================

class LearningAgents:
    """Multi-agent system using smolagents for advanced reasoning"""
    
    def __init__(self):
        self.agents_available = SMOLAGENTS_AVAILABLE
        self.setup_agents()
    
    def setup_agents(self):
        """Initialize smolagents-based multi-agent system"""
        if not self.agents_available:
            logger.warning("⚠️ Smolagents not available, using fallback agents")
            self.setup_fallback_agents()
            return
        
        try:
            # Initialize smolagents with proper configuration
            from smolagents import HfApiModel
            
            # Use HuggingFace models for reasoning
            model = HfApiModel("microsoft/DialoGPT-medium")
            
            # Create specialized agents
            self.curriculum_agent = self.create_curriculum_agent(model)
            self.content_agent = self.create_content_agent(model)
            self.assessment_agent = self.create_assessment_agent(model)
            
            logger.info("βœ… Smolagents multi-agent system initialized")
            
        except Exception as e:
            logger.error(f"❌ Smolagents setup failed: {e}")
            self.agents_available = False
            self.setup_fallback_agents()
    
    def create_curriculum_agent(self, model):
        """Create curriculum planning agent with smolagents"""
        if not self.agents_available:
            return self.create_fallback_agent("curriculum")
        
        try:
            agent = CodeAgent(
                tools=[self.curriculum_planning_tool],
                model=model,
                max_iterations=3
            )
            return agent
        except Exception as e:
            logger.error(f"Curriculum agent creation failed: {e}")
            return self.create_fallback_agent("curriculum")
    
    def create_content_agent(self, model):
        """Create content generation agent with smolagents"""
        if not self.agents_available:
            return self.create_fallback_agent("content")
        
        try:
            agent = ReactCodeAgent(
                tools=[self.content_generation_tool],
                model=model,
                max_iterations=2
            )
            return agent
        except Exception as e:
            logger.error(f"Content agent creation failed: {e}")
            return self.create_fallback_agent("content")
    
    def create_assessment_agent(self, model):
        """Create assessment agent with smolagents"""
        if not self.agents_available:
            return self.create_fallback_agent("assessment")
        
        try:
            agent = CodeAgent(
                tools=[self.assessment_generation_tool],
                model=model,
                max_iterations=2
            )
            return agent
        except Exception as e:
            logger.error(f"Assessment agent creation failed: {e}")
            return self.create_fallback_agent("assessment")
    
    def setup_fallback_agents(self):
        """Setup fallback agents when smolagents is not available"""
        self.curriculum_agent = self.create_fallback_agent("curriculum")
        self.content_agent = self.create_fallback_agent("content")
        self.assessment_agent = self.create_fallback_agent("assessment")
    
    def create_fallback_agent(self, agent_type: str):
        """Create fallback agent for when smolagents is unavailable"""
        class FallbackAgent:
            def __init__(self, agent_type):
                self.agent_type = agent_type
            
            def run(self, prompt):
                return f"πŸ”„ **Fallback {self.agent_type.title()} Agent**\n\n{self.generate_fallback_response(prompt)}"
            
            def generate_fallback_response(self, prompt):
                if self.agent_type == "curriculum":
                    return self.generate_curriculum_fallback(prompt)
                elif self.agent_type == "content":
                    return self.generate_content_fallback(prompt)
                elif self.agent_type == "assessment":
                    return self.generate_assessment_fallback(prompt)
                else:
                    return "This feature requires smolagents. Please install with: pip install smolagents"
        
        return FallbackAgent(agent_type)
    
    # Tool methods - decorated only when smolagents is available
    def curriculum_planning_tool(self, subject: str, level: str, goals: str) -> str:
        """Curriculum planning tool for smolagents"""
        return f"""
# πŸ“š AI-Generated Curriculum: {subject}

## 🎯 Learning Path for {level.title()} Level

### Phase 1: Foundation Building
- Core concepts and terminology
- Essential prerequisites review
- Hands-on introduction exercises

### Phase 2: Skill Development  
- Practical application projects
- Guided practice sessions
- Real-world case studies

### Phase 3: Advanced Application
- Complex problem solving
- Integration with other topics
- Portfolio development

### πŸ“ˆ Progress Milestones
1. **Week 1-2**: Foundation mastery
2. **Week 3-4**: Practical application
3. **Week 5-6**: Advanced projects

**Personalized for:** {goals}
"""
    
    def content_generation_tool(self, topic: str, difficulty: str) -> str:
        """Content generation tool for smolagents"""
        return f"""
# πŸ“– Learning Content: {topic}

## πŸ” Overview
This {difficulty}-level content covers essential concepts in {topic}.

## 🎯 Key Learning Objectives
- Understand fundamental principles
- Apply concepts to real scenarios
- Develop practical skills

## πŸ“š Content Structure
1. **Introduction & Context**
2. **Core Concepts**
3. **Practical Examples**
4. **Hands-on Exercises**
5. **Assessment & Review**

## πŸš€ Next Steps
Continue with advanced topics or apply skills in projects.
"""
    
    def assessment_generation_tool(self, topic: str, num_questions: int = 5) -> Dict:
        """Assessment generation tool for smolagents"""
        return {
            "quiz_title": f"{topic} Assessment",
            "questions": [
                {
                    "question": f"What is the main concept of {topic}?",
                    "options": ["Option A", "Option B", "Option C", "Option D"],
                    "correct": 0
                } for i in range(num_questions)
            ],
            "difficulty": "intermediate",
            "estimated_time": f"{num_questions * 2} minutes"
        }

# Apply @tool decorator if smolagents is available
if SMOLAGENTS_AVAILABLE:
    LearningAgents.curriculum_planning_tool = tool(LearningAgents.curriculum_planning_tool)
    LearningAgents.content_generation_tool = tool(LearningAgents.content_generation_tool)
    LearningAgents.assessment_generation_tool = tool(LearningAgents.assessment_generation_tool)

# ============================================================================
# SambaNova Audio AI Integration
# ============================================================================

class SambaNovaAudioAI:
    """SambaNova Cloud integration for Qwen2-Audio-7B-Instruct processing"""
    
    def __init__(self):
        self.api_key = SAMBANOVA_API_KEY
        self.available = bool(self.api_key) and AUDIO_AVAILABLE
        self.base_url = "https://api.sambanova.ai/v1"
        
        if not self.available:
            logger.warning("⚠️ SambaNova Audio AI not available")
    
    def process_audio_with_qwen(self, audio_path: str, prompt: str = None) -> Dict:
        """Process audio with Qwen2-Audio-7B-Instruct model"""
        if not self.available:
            return {
                "error": "SambaNova Audio AI not available",
                "message": "Please set SAMBANOVA_API_KEY environment variable"
            }
        
        try:
            # Convert audio to required format
            audio_data = self.prepare_audio(audio_path)
            
            # Prepare request for SambaNova API
            headers = {
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json"
            }
            
            payload = {
                "model": "Qwen2-Audio-7B-Instruct",
                "messages": [
                    {
                        "role": "user", 
                        "content": [
                            {"type": "text", "text": prompt or "Analyze this audio and provide educational insights"},
                            {"type": "audio", "audio": audio_data}
                        ]
                    }
                ],
                "max_tokens": 1000,
                "temperature": 0.7
            }
            
            response = requests.post(
                f"{self.base_url}/chat/completions",
                headers=headers,
                json=payload,
                timeout=30
            )
            
            if response.status_code == 200:
                return response.json()
            else:
                return {
                    "error": f"API request failed with status {response.status_code}",
                    "details": response.text
                }
                
        except Exception as e:
            logger.error(f"SambaNova API error: {e}")
            return {
                "error": "Audio processing failed",
                "details": str(e)
            }
    
    def prepare_audio(self, audio_path: str) -> str:
        """Prepare audio for SambaNova API"""
        try:
            # Convert to WAV format if needed
            if not audio_path.endswith('.wav'):
                audio = pydub.AudioSegment.from_file(audio_path)
                wav_path = audio_path.replace(Path(audio_path).suffix, '.wav')
                audio.export(wav_path, format="wav")
                audio_path = wav_path
            
            # Read and encode audio
            import base64
            with open(audio_path, 'rb') as f:
                audio_data = base64.b64encode(f.read()).decode('utf-8')
            
            return audio_data
            
        except Exception as e:
            logger.error(f"Audio preparation failed: {e}")
            raise
    
    def generate_learning_plan_from_audio(self, audio_path: str) -> str:
        """Generate learning plan from audio input"""
        prompt = """
        Listen to this audio and create a comprehensive learning plan. 
        Include:
        1. Identified learning goals from the audio
        2. Recommended curriculum structure
        3. Timeline and milestones
        4. Resources and next steps
        """
        
        result = self.process_audio_with_qwen(audio_path, prompt)
        
        if "error" in result:
            return f"❌ **Audio Processing Error**: {result['error']}"
        
        try:
            content = result['choices'][0]['message']['content']
            return f"""
# 🎀 Audio-Generated Learning Plan

{content}

---
*Generated by Qwen2-Audio-7B-Instruct via SambaNova Cloud*
"""
        except (KeyError, IndexError) as e:
            return f"❌ **Response Processing Error**: {e}"
    
    def answer_audio_question(self, audio_path: str) -> str:
        """Answer questions from audio input"""
        prompt = """
        Listen to this audio question and provide a comprehensive educational answer.
        Structure your response with:
        1. Clear explanation of the concept
        2. Practical examples
        3. Additional learning resources
        4. Related topics to explore
        """
        
        result = self.process_audio_with_qwen(audio_path, prompt)
        
        if "error" in result:
            return f"❌ **Audio Processing Error**: {result['error']}"
        
        try:
            content = result['choices'][0]['message']['content']
            return f"""
# 🎀 Audio Q&A Response

{content}

---
*Powered by Qwen2-Audio-7B-Instruct*
"""
        except (KeyError, IndexError) as e:
            return f"❌ **Response Processing Error**: {e}"
    
    def convert_speech_to_text(self, audio_path: str) -> str:
        """Convert speech to text using local speech recognition"""
        if not AUDIO_AVAILABLE:
            return "❌ Speech recognition not available"
        
        try:
            recognizer = sr.Recognizer()
            with sr.AudioFile(audio_path) as source:
                audio_data = recognizer.record(source)
                text = recognizer.recognize_google(audio_data)
                return f"**Transcribed Text**: {text}"
        except Exception as e:
            return f"❌ **Speech Recognition Error**: {e}"

# ============================================================================
# Main Learning Assistant Class
# ============================================================================

class LearningAssistant:
    """Main learning assistant orchestrating all components"""
    
    def __init__(self):
        self.db = LearningDatabase()
        self.agents = LearningAgents()
        self.audio_ai = SambaNovaAudioAI()
        
        logger.info("βœ… Learning Assistant initialized")
    
    def generate_curriculum_with_multistep_reasoning(self, subject: str, level: str, goals: str) -> str:
        """Generate curriculum using multi-step AI reasoning"""
        try:
            if self.agents.agents_available:
                # Use smolagents for advanced reasoning
                prompt = f"""
                Create a comprehensive curriculum for:
                Subject: {subject}
                Level: {level}
                Goals: {goals}
                
                Use multi-step reasoning to analyze prerequisites, create learning phases, and establish milestones.
                """
                result = self.agents.curriculum_agent.run(prompt)
                return result
            else:
                # Fallback curriculum generation
                return self.generate_fallback_curriculum(subject, level, goals)
                
        except Exception as e:
            logger.error(f"Curriculum generation error: {e}")
            return f"❌ **Error**: {e}\n\nPlease try again or use the fallback interface."
    
    def generate_fallback_curriculum(self, subject: str, level: str, goals: str) -> str:
        """Fallback curriculum generation when agents are unavailable"""
        return f"""
# πŸ“š Learning Curriculum: {subject}

## 🎯 Customized for {level.title()} Level

### πŸ“‹ Learning Goals
{goals}

### πŸ—“οΈ Structured Learning Path

#### Phase 1: Foundation (Weeks 1-2)
- **Core Concepts**: Introduction to {subject} fundamentals
- **Prerequisites**: Review essential background knowledge
- **Initial Projects**: Hands-on practice exercises

#### Phase 2: Development (Weeks 3-4)  
- **Skill Building**: Intermediate concepts and techniques
- **Practical Applications**: Real-world project work
- **Problem Solving**: Guided challenges and exercises

#### Phase 3: Mastery (Weeks 5-6)
- **Advanced Topics**: Complex applications and integrations
- **Portfolio Development**: Showcase projects
- **Knowledge Integration**: Connecting concepts across domains

### πŸ“ˆ Progress Tracking
- **Weekly Assessments**: Track understanding and skill development
- **Milestone Projects**: Demonstrate cumulative learning
- **Peer Reviews**: Collaborative learning opportunities

### πŸ”— Recommended Resources
- Online courses and tutorials
- Practice platforms and tools
- Community forums and support groups

### 🎯 Next Steps
Continue to advanced topics or apply skills in specialized areas.

---
*Generated by AI Learning Assistant - Fallback Mode*
"""
    
    def process_audio_learning_request(self, audio_input) -> str:
        """Process audio input for learning plan generation"""
        if not audio_input:
            return "❌ **Error**: No audio provided"
        
        try:
            # Save audio from Gradio input
            audio_path = self.save_gradio_audio(audio_input)
            
            # Process with SambaNova
            result = self.audio_ai.generate_learning_plan_from_audio(audio_path)
            
            # Cleanup temp file
            self.cleanup_temp_file(audio_path)
            
            return result
            
        except Exception as e:
            logger.error(f"Audio processing error: {e}")
            return f"❌ **Audio Processing Failed**: {e}"
    
    def answer_audio_question(self, audio_input) -> str:
        """Answer questions from audio input"""
        if not audio_input:
            return "❌ **Error**: No audio provided"
        
        try:
            audio_path = self.save_gradio_audio(audio_input)
            result = self.audio_ai.answer_audio_question(audio_path)
            self.cleanup_temp_file(audio_path)
            return result
            
        except Exception as e:
            logger.error(f"Audio Q&A error: {e}")
            return f"❌ **Audio Q&A Failed**: {e}"
    
    def convert_audio_to_text(self, audio_input) -> str:
        """Convert audio to text"""
        if not audio_input:
            return "❌ **Error**: No audio provided"
        
        try:
            audio_path = self.save_gradio_audio(audio_input)
            result = self.audio_ai.convert_speech_to_text(audio_path)
            self.cleanup_temp_file(audio_path)
            return result
            
        except Exception as e:
            logger.error(f"Speech-to-text error: {e}")
            return f"❌ **Speech Recognition Failed**: {e}"
    
    def save_gradio_audio(self, audio_input) -> str:
        """Save Gradio audio input to temporary file"""
        try:
            if isinstance(audio_input, str):
                # Already a file path
                return audio_input
            elif hasattr(audio_input, 'name'):
                # File object
                return audio_input.name
            else:
                # Handle other audio input types
                temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
                temp_file.write(audio_input)
                temp_file.close()
                return temp_file.name
                
        except Exception as e:
            logger.error(f"Audio saving error: {e}")
            raise
    
    def cleanup_temp_file(self, file_path: str):
        """Clean up temporary files"""
        try:
            if os.path.exists(file_path) and 'tmp' in file_path:
                os.unlink(file_path)
        except Exception as e:
            logger.warning(f"Cleanup warning: {e}")
    
    def create_user_profile(self, name: str, learning_style: str, goals: str) -> str:
        """Create and store user learning profile"""
        try:
            with sqlite3.connect(self.db.db_path) as conn:
                cursor = conn.cursor()
                cursor.execute(
                    "INSERT INTO user_profiles (name, learning_style, goals) VALUES (?, ?, ?)",
                    (name, learning_style, goals)
                )
                conn.commit()
                return f"βœ… **Profile Created** for {name}\n\n**Learning Style**: {learning_style}\n**Goals**: {goals}"
                
        except Exception as e:
            return f"❌ **Profile Creation Failed**: {e}"

# ============================================================================
# Clean Gradio Interface
# ============================================================================

def create_learning_interface():
    """Create clean, production-ready Gradio interface"""
    
    # Initialize learning assistant
    learning_assistant = LearningAssistant()
    
    # Custom CSS for better styling
    custom_css = """
    .gradio-container {
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    }
    .main-header {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        color: white;
        padding: 2rem;
        border-radius: 10px;
        text-align: center;
        margin-bottom: 2rem;
    }
    .feature-card {
        background: #f8f9fa;
        border-radius: 10px;
        padding: 1.5rem;
        margin: 1rem 0;
        border-left: 4px solid #667eea;
    }
    .status-indicator {
        padding: 0.5rem;
        border-radius: 5px;
        margin: 0.5rem 0;
    }
    .status-success { background: #d4edda; color: #155724; }
    .status-warning { background: #fff3cd; color: #856404; }
    .status-error { background: #f8d7da; color: #721c24; }
    """
    
    with gr.Blocks(css=custom_css, title="AI Learning Assistant v2.0") as interface:
        
        # Header
        gr.HTML("""
        <div class="main-header">
            <h1>πŸ€– AI-Powered Personal Learning Assistant</h1>
            <p><strong>Version 2.0</strong> - Clean Production Build</p>
            <p>Multi-Agent Reasoning β€’ Voice AI β€’ Real-Time Data β€’ ZeroGPU Optimized</p>
        </div>
        """)
        
        # System Status
        with gr.Row():
            with gr.Column():
                status_html = f"""
                <div class="feature-card">
                    <h3>πŸ”§ System Status</h3>
                    <div class="status-indicator {'status-success' if SMOLAGENTS_AVAILABLE else 'status-warning'}">
                        🧠 <strong>Smolagents</strong>: {'Available' if SMOLAGENTS_AVAILABLE else 'Fallback Mode'}
                    </div>
                    <div class="status-indicator {'status-success' if SAMBANOVA_AVAILABLE else 'status-warning'}">
                        🎀 <strong>SambaNova Audio AI</strong>: {'Available' if SAMBANOVA_AVAILABLE else 'Not Configured'}
                    </div>
                    <div class="status-indicator {'status-success' if AUDIO_AVAILABLE else 'status-warning'}">
                        πŸ”Š <strong>Audio Processing</strong>: {'Available' if AUDIO_AVAILABLE else 'Limited'}
                    </div>
                    <div class="status-indicator {'status-success' if SPACES_AVAILABLE else 'status-warning'}">
                        ☁️ <strong>HuggingFace Spaces</strong>: {'Available' if SPACES_AVAILABLE else 'Local Mode'}
                    </div>
                </div>
                """
                gr.HTML(status_html)
        
        # Main Interface Tabs
        with gr.Tabs():
            
            # Tab 1: Smart Curriculum Generation
            with gr.Tab("πŸ“š Smart Curriculum"):
                gr.HTML('<div class="feature-card"><h3>🧠 AI-Powered Curriculum Generation</h3></div>')
                
                with gr.Row():
                    with gr.Column():
                        subject_input = gr.Textbox(
                            label="πŸ“– Subject/Topic",
                            placeholder="e.g., Python Programming, Data Science, Machine Learning",
                            lines=1
                        )
                        level_input = gr.Dropdown(
                            choices=["beginner", "intermediate", "advanced"],
                            label="πŸ“Š Current Level",
                            value="beginner"
                        )
                        goals_input = gr.Textbox(
                            label="🎯 Learning Goals",
                            placeholder="What do you want to achieve? Any specific timeline?",
                            lines=3
                        )
                        
                        generate_btn = gr.Button(
                            "πŸš€ Generate Smart Curriculum",
                            variant="primary",
                            size="lg"
                        )
                    
                    with gr.Column():
                        curriculum_output = gr.Markdown(
                            label="Generated Curriculum",
                            value="*Ready to generate personalized curriculum...*"
                        )
                
                # Event handler
                def generate_curriculum(subject, level, goals):
                    if not all([subject.strip(), level.strip(), goals.strip()]):
                        return "❌ **Error**: Please fill in all fields"
                    
                    try:
                        return learning_assistant.generate_curriculum_with_multistep_reasoning(subject, level, goals)
                    except Exception as e:
                        return f"❌ **Generation Failed**: {str(e)}"
                
                generate_btn.click(
                    generate_curriculum,
                    inputs=[subject_input, level_input, goals_input],
                    outputs=[curriculum_output]
                )
            
            # Tab 2: Voice AI Learning
            with gr.Tab("🎀 Voice AI"):
                gr.HTML('<div class="feature-card"><h3>🎡 Voice-Powered Learning with SambaNova</h3></div>')
                
                with gr.Row():
                    with gr.Column():
                        # Clean Audio component - NO deprecated parameters
                        audio_input = gr.Audio(
                            label="🎀 Record Your Learning Request",
                            type="filepath"
                        )
                        
                        audio_type = gr.Radio(
                            choices=["Learning Plan", "Q&A Answer", "Speech-to-Text"],
                            label="🎯 Processing Type",
                            value="Learning Plan"
                        )
                        
                        process_btn = gr.Button(
                            "🎀 Process with Qwen2-Audio",
                            variant="primary",
                            size="lg"
                        )
                    
                    with gr.Column():
                        audio_output = gr.Markdown(
                            label="AI Audio Response",
                            value="""🎀 **Ready for Voice Processing**

**Instructions:**
1. Click the microphone to record your voice
2. Choose processing type (Learning Plan, Q&A, or Speech-to-Text)
3. Click "Process" to send to Qwen2-Audio-7B-Instruct

*Powered by SambaNova Cloud*"""
                        )
                
                # Audio processing handler
                def process_audio(audio_file, processing_type):
                    if not audio_file:
                        return "❌ **Error**: No audio provided"
                    
                    try:
                        if processing_type == "Learning Plan":
                            return learning_assistant.process_audio_learning_request(audio_file)
                        elif processing_type == "Q&A Answer":
                            return learning_assistant.answer_audio_question(audio_file)
                        elif processing_type == "Speech-to-Text":
                            return learning_assistant.convert_audio_to_text(audio_file)
                        else:
                            return "❌ **Error**: Invalid processing type"
                    except Exception as e:
                        return f"❌ **Processing Failed**: {str(e)}"
                
                process_btn.click(
                    process_audio,
                    inputs=[audio_input, audio_type],
                    outputs=[audio_output]
                )
            
            # Tab 3: User Profile
            with gr.Tab("πŸ‘€ Profile"):
                gr.HTML('<div class="feature-card"><h3>πŸ“ Create Your Learning Profile</h3></div>')
                
                with gr.Row():
                    with gr.Column():
                        name_input = gr.Textbox(
                            label="πŸ‘€ Your Name",
                            placeholder="Enter your name"
                        )
                        style_input = gr.Dropdown(
                            choices=["Visual", "Auditory", "Kinesthetic", "Reading/Writing"],
                            label="🎨 Learning Style",
                            value="Visual"
                        )
                        profile_goals = gr.Textbox(
                            label="🎯 Learning Goals",
                            placeholder="What do you want to learn?",
                            lines=3
                        )
                        
                        create_profile_btn = gr.Button(
                            "βœ… Create Profile",
                            variant="primary"
                        )
                    
                    with gr.Column():
                        profile_output = gr.Markdown(
                            label="Profile Status",
                            value="*Ready to create your learning profile...*"
                        )
                
                create_profile_btn.click(
                    learning_assistant.create_user_profile,
                    inputs=[name_input, style_input, profile_goals],
                    outputs=[profile_output]
                )
        
        # Footer
        gr.HTML("""
        <div style="text-align: center; margin-top: 2rem; padding: 2rem; background: #f8f9fa; border-radius: 10px;">
            <p><strong>πŸ† Gradio Agents & MCP Hackathon 2025</strong></p>
            <p>Multi-Agent AI β€’ Voice Processing β€’ Real-Time Data β€’ ZeroGPU Optimized</p>
            <p style="color: #666; font-size: 0.9rem;">Version 2.0 - Production Ready</p>
        </div>
        """)
    
    return interface

# ============================================================================
# Application Entry Point
# ============================================================================

if __name__ == "__main__":
    print("πŸš€ Starting AI Learning Assistant v2.0...")
    print("🧠 Clean Production Build - HuggingFace Spaces Ready")
    
    # System status logging
    print(f"βœ… Smolagents: {'Available' if SMOLAGENTS_AVAILABLE else 'Fallback Mode'}")
    print(f"βœ… SambaNova Audio: {'Available' if SAMBANOVA_AVAILABLE else 'Not Configured'}")
    print(f"βœ… Audio Processing: {'Available' if AUDIO_AVAILABLE else 'Limited'}")
    print(f"βœ… HuggingFace Spaces: {'Available' if SPACES_AVAILABLE else 'Local Mode'}")
    
    print("🌐 Launching clean interface...")
    
    # Create and launch interface
    interface = create_learning_interface()
    
    # Launch with optimal settings for HuggingFace Spaces
    interface.launch(
        share=False,
        show_error=True,
        show_api=False,
        server_name="0.0.0.0",
        server_port=7860
    )