File size: 7,759 Bytes
751a827 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
"""
緊急測試修復後的關鍵字提取
"""
def test_emergency_keyword_extraction():
"""測試緊急修復的關鍵字提取"""
def extract_keywords_emergency(query_text: str):
"""緊急修復版的關鍵字提取邏輯"""
# 移除常見的查詢詞彙
stop_words = ['推薦', '有沒有', '是否有', '請問', '想要', '需要', '找', '查詢', '搜尋', '還有嗎', '還有', '嗎', '可以']
# 清理查詢文字
cleaned_text = query_text.replace('?', '').replace('?', '').strip()
# 先嘗試提取核心商品詞彙
core_product_words = ['貓砂', '狗糧', '寵物', '商品', '產品', '貓', '狗', '犬', '礦砂']
extracted_core_words = []
for core_word in core_product_words:
if core_word in cleaned_text:
extracted_core_words.append(core_word)
# 分割並清理關鍵字
words = cleaned_text.split()
keywords = []
for word in words:
if word not in stop_words and len(word) > 1:
keywords.append(word)
# 合併核心詞彙和分割的關鍵字
all_keywords = list(set(extracted_core_words + keywords))
# 如果沒有有效關鍵字,使用清理後的文字
if not all_keywords:
all_keywords = [cleaned_text]
# 擴展相關關鍵字
expanded_keywords = []
for keyword in all_keywords:
expanded_keywords.append(keyword)
# 貓砂相關擴展
if '貓砂' in keyword or '貓' in keyword:
expanded_keywords.extend(['礦砂', '豆腐砂', '水晶砂', '木屑砂', 'litter', '貓砂'])
# 狗糧相關擴展
if '狗糧' in keyword or '狗' in keyword:
expanded_keywords.extend(['犬糧', '犬種', '狗食', 'dog'])
# 寵物相關擴展
if '寵物' in keyword:
expanded_keywords.extend(['貓', '狗', '犬', 'pet', 'cat'])
# 商品相關擴展
if '商品' in keyword or '產品' in keyword:
expanded_keywords.extend(['貓砂', '狗糧', '寵物', '食品', '用品'])
# 去除重複並返回
unique_keywords = list(set(expanded_keywords))
return unique_keywords, extracted_core_words
print("🚨 緊急測試關鍵字提取修復")
print("=" * 50)
# 測試實際的用戶查詢
test_cases = [
"請問有商品可以推薦嗎?",
"請問貓砂還有嗎?",
"貓砂還有嗎?",
"推薦一些商品",
"有什麼寵物用品?"
]
for query in test_cases:
print(f"\n查詢: '{query}'")
keywords, core_words = extract_keywords_emergency(query)
print(f" 核心詞彙: {core_words}")
print(f" 最終關鍵字: {keywords}")
# 檢查是否包含預期的關鍵字
if "貓砂" in query:
if '貓砂' in keywords and '礦砂' in keywords:
print(" ✅ 包含預期的貓砂相關關鍵字")
else:
print(" ❌ 缺少預期的貓砂關鍵字")
if "商品" in query:
if any(word in keywords for word in ['商品', '貓砂', '狗糧', '寵物']):
print(" ✅ 包含商品相關關鍵字")
else:
print(" ❌ 缺少商品相關關鍵字")
def test_product_matching_emergency():
"""測試緊急修復的商品匹配"""
def extract_keywords_emergency(query_text: str):
stop_words = ['推薦', '有沒有', '是否有', '請問', '想要', '需要', '找', '查詢', '搜尋', '還有嗎', '還有', '嗎', '可以']
cleaned_text = query_text.replace('?', '').replace('?', '').strip()
core_product_words = ['貓砂', '狗糧', '寵物', '商品', '產品', '貓', '狗', '犬', '礦砂']
extracted_core_words = []
for core_word in core_product_words:
if core_word in cleaned_text:
extracted_core_words.append(core_word)
words = cleaned_text.split()
keywords = [word for word in words if word not in stop_words and len(word) > 1]
all_keywords = list(set(extracted_core_words + keywords))
if not all_keywords:
all_keywords = [cleaned_text]
expanded_keywords = []
for keyword in all_keywords:
expanded_keywords.append(keyword)
if '貓砂' in keyword or '貓' in keyword:
expanded_keywords.extend(['礦砂', '豆腐砂', '水晶砂', '木屑砂', 'litter', '貓砂'])
if '狗糧' in keyword or '狗' in keyword:
expanded_keywords.extend(['犬糧', '犬種', '狗食', 'dog'])
if '寵物' in keyword:
expanded_keywords.extend(['貓', '狗', '犬', 'pet', 'cat'])
if '商品' in keyword or '產品' in keyword:
expanded_keywords.extend(['貓砂', '狗糧', '寵物', '食品', '用品'])
return list(set(expanded_keywords))
# 實際商品資料
products = [
{
"id": 1,
"productCode": "OL1100-1",
"productName": "毆力天然犬種300g 室內成犬無榖小顆粒",
"stock": 100
},
{
"id": 2,
"productCode": "SW-06-01",
"productName": "Shovel well豪好鏟 破碎型礦砂",
"stock": 50
},
{
"id": 3,
"productCode": "TL-03",
"productName": "美國極冠貓砂 薰衣草12kg",
"stock": 48
},
{
"id": 4,
"productCode": "SL11002",
"productName": "首領汪 膠原鴨舌 5入彭湃包",
"stock": 100
}
]
print("\n🛍️ 緊急測試商品匹配")
print("=" * 50)
test_queries = [
"請問有商品可以推薦嗎?",
"請問貓砂還有嗎?",
"貓砂還有嗎?"
]
for query in test_queries:
print(f"\n查詢: '{query}'")
keywords = extract_keywords_emergency(query)
print(f"關鍵字: {keywords}")
matched_products = []
for product in products:
product_name_lower = product["productName"].lower()
product_code_lower = product["productCode"].lower()
for keyword in keywords:
keyword_lower = keyword.lower()
if (keyword_lower in product_name_lower or
keyword_lower in product_code_lower):
if product not in matched_products:
matched_products.append(product)
print(f" ✅ 匹配: {product['productName']} (關鍵字: {keyword})")
break
print(f"找到 {len(matched_products)} 個商品")
if not matched_products:
print(" ❌ 沒有找到商品 - 需要進一步調試")
def main():
"""主函數"""
print("🚨 緊急修復測試")
print("=" * 60)
test_emergency_keyword_extraction()
test_product_matching_emergency()
print("\n" + "=" * 60)
print("🔍 診斷結果:")
print("1. 檢查關鍵字提取是否正確")
print("2. 檢查商品匹配邏輯")
print("3. 如果測試通過,重啟服務應該能工作")
if __name__ == "__main__":
main()
|