metehan777's picture
Update app.py
9148e9f verified
import streamlit as st
import requests
import json
import networkx as nx
from urllib.parse import urlparse, urljoin
import time
from datetime import datetime
import anthropic
from typing import List, Dict, Set, Tuple
import re
from collections import defaultdict
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import logging
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from io import StringIO
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Page config
st.set_page_config(
page_title="WordPress SEO Query Analyzer",
page_icon="πŸ”",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.stTabs [data-baseweb="tab-list"] button [data-testid="stMarkdownContainer"] p {
font-size: 16px;
}
.metric-card {
background-color: #f0f2f6;
padding: 20px;
border-radius: 10px;
text-align: center;
}
.recommendation-card {
background-color: #e8f4f8;
padding: 15px;
border-radius: 8px;
margin-bottom: 10px;
border-left: 4px solid #1f77b4;
}
.high-priority {
border-left-color: #ff4444;
}
.medium-priority {
border-left-color: #ffaa44;
}
.low-priority {
border-left-color: #44ff44;
}
</style>
""", unsafe_allow_html=True)
class WordPressQueryFanOutAnalyzer:
"""Analyze WordPress sites for Google AI Mode query fan-out optimization"""
def __init__(self, site_url: str, claude_api_key: str):
self.site_url = site_url.rstrip('/')
self.api_base = f"{self.site_url}/wp-json/wp/v2"
self.claude = anthropic.Anthropic(api_key=claude_api_key)
self.content_graph = nx.DiGraph()
self.query_patterns = defaultdict(list)
self.content_cache = {}
self.tfidf_vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
def fetch_all_content(self, progress_callback=None) -> Dict:
"""Fetch all content from WordPress site"""
content = {
'posts': [],
'pages': [],
'categories': [],
'tags': [],
'media': []
}
# Fetch posts
if progress_callback:
progress_callback(0.1, "Fetching posts...")
content['posts'] = self.fetch_posts()
# Fetch pages
if progress_callback:
progress_callback(0.3, "Fetching pages...")
content['pages'] = self.fetch_pages()
# Fetch categories
if progress_callback:
progress_callback(0.5, "Fetching categories...")
content['categories'] = self.fetch_categories()
# Fetch tags
if progress_callback:
progress_callback(0.7, "Fetching tags...")
content['tags'] = self.fetch_tags()
# Fetch media
if progress_callback:
progress_callback(0.9, "Fetching media info...")
content['media'] = self.fetch_media_info()
if progress_callback:
progress_callback(1.0, "Content fetching complete!")
return content
def fetch_posts(self, per_page=100) -> List[Dict]:
"""Fetch all posts from WordPress"""
posts = []
page = 1
while True:
try:
response = requests.get(
f"{self.api_base}/posts",
params={'per_page': per_page, 'page': page, '_embed': True},
timeout=30
)
if response.status_code == 200:
batch = response.json()
if not batch:
break
posts.extend(batch)
page += 1
time.sleep(0.5) # Rate limiting
else:
break
except Exception as e:
st.error(f"Error fetching posts: {e}")
break
return posts
def fetch_pages(self, per_page=100) -> List[Dict]:
"""Fetch all pages from WordPress"""
pages = []
page = 1
while True:
try:
response = requests.get(
f"{self.api_base}/pages",
params={'per_page': per_page, 'page': page, '_embed': True},
timeout=30
)
if response.status_code == 200:
batch = response.json()
if not batch:
break
pages.extend(batch)
page += 1
time.sleep(0.5)
else:
break
except Exception as e:
st.error(f"Error fetching pages: {e}")
break
return pages
def fetch_categories(self) -> List[Dict]:
"""Fetch all categories"""
try:
response = requests.get(f"{self.api_base}/categories", params={'per_page': 100}, timeout=30)
return response.json() if response.status_code == 200 else []
except:
return []
def fetch_tags(self) -> List[Dict]:
"""Fetch all tags"""
try:
response = requests.get(f"{self.api_base}/tags", params={'per_page': 100}, timeout=30)
return response.json() if response.status_code == 200 else []
except:
return []
def fetch_media_info(self) -> List[Dict]:
"""Fetch media information"""
try:
response = requests.get(f"{self.api_base}/media", params={'per_page': 50}, timeout=30)
return response.json() if response.status_code == 200 else []
except:
return []
def build_content_graph(self, content: Dict) -> nx.DiGraph:
"""Build a graph representation of the site's content"""
# Add posts as nodes
for post in content['posts']:
self.content_graph.add_node(
post['id'],
type='post',
title=post['title']['rendered'],
url=post['link'],
content=self.clean_html(post['content']['rendered']),
excerpt=self.clean_html(post['excerpt']['rendered']),
categories=post.get('categories', []),
tags=post.get('tags', []),
date=post['date']
)
# Add pages as nodes
for page in content['pages']:
self.content_graph.add_node(
f"page_{page['id']}",
type='page',
title=page['title']['rendered'],
url=page['link'],
content=self.clean_html(page['content']['rendered']),
parent=page.get('parent', 0),
date=page['date']
)
# Build edges based on internal links
self.build_internal_link_edges()
# Build edges based on category/tag relationships
self.build_taxonomy_edges(content)
return self.content_graph
def clean_html(self, html: str) -> str:
"""Remove HTML tags and clean text"""
text = re.sub('<.*?>', '', html)
text = re.sub(r'\s+', ' ', text)
return text.strip()
def build_internal_link_edges(self):
"""Extract and build edges from internal links"""
for node_id, data in self.content_graph.nodes(data=True):
if 'content' in data:
# Extract internal links
links = re.findall(rf'{self.site_url}/[^"\'>\s]+', data['content'])
for link in links:
# Find the target node
for target_id, target_data in self.content_graph.nodes(data=True):
if target_data.get('url') == link:
self.content_graph.add_edge(node_id, target_id, type='internal_link')
break
def build_taxonomy_edges(self, content: Dict):
"""Build edges based on categories and tags"""
# Create category nodes
for cat in content['categories']:
self.content_graph.add_node(
f"cat_{cat['id']}",
type='category',
name=cat['name'],
slug=cat['slug']
)
# Create tag nodes
for tag in content['tags']:
self.content_graph.add_node(
f"tag_{tag['id']}",
type='tag',
name=tag['name'],
slug=tag['slug']
)
# Connect posts to categories and tags
for node_id, data in self.content_graph.nodes(data=True):
if data['type'] == 'post':
for cat_id in data.get('categories', []):
self.content_graph.add_edge(node_id, f"cat_{cat_id}", type='categorized_as')
for tag_id in data.get('tags', []):
self.content_graph.add_edge(node_id, f"tag_{tag_id}", type='tagged_as')
def analyze_query_patterns(self) -> Dict:
"""Analyze content for complex query patterns using Claude"""
patterns = {
'complex_queries': [],
'decompositions': {},
'coverage_analysis': {},
'opportunities': []
}
# Sample content for analysis
sample_content = self.get_content_sample()
# Analyze with Claude
prompt = f"""Analyze this WordPress site content for Google AI Mode query optimization opportunities.
Site URL: {self.site_url}
Content Sample:
{json.dumps(sample_content, indent=2)[:3000]}
Identify:
1. Complex queries users might ask that would trigger Google's query fan-out
2. How Google would decompose these queries into sub-queries
3. Which content currently answers which sub-queries
4. Gaps where sub-queries aren't answered
5. Multi-source optimization opportunities
Focus on queries that would require multiple hops of reasoning to answer fully.
Provide analysis in JSON format with:
- complex_queries: List of potential complex user queries
- decompositions: How each query would be broken down
- current_coverage: Which content addresses which sub-queries
- gaps: Missing sub-query content
- recommendations: Specific content to create"""
try:
response = self.claude.messages.create(
model="claude-3-opus-20240229",
max_tokens=4000,
messages=[{"role": "user", "content": prompt}]
)
# Parse Claude's response
analysis = self.parse_claude_response(response.content[0].text)
patterns.update(analysis)
except Exception as e:
st.error(f"Error analyzing with Claude: {e}")
return patterns
def get_content_sample(self) -> List[Dict]:
"""Get a representative sample of content"""
sample = []
for node_id, data in list(self.content_graph.nodes(data=True))[:20]:
if data['type'] in ['post', 'page']:
sample.append({
'title': data['title'],
'type': data['type'],
'excerpt': data.get('excerpt', '')[:200],
'url': data['url']
})
return sample
def parse_claude_response(self, response_text: str) -> Dict:
"""Parse Claude's response into structured data"""
try:
# Try to extract JSON from response
json_match = re.search(r'\{[\s\S]*\}', response_text)
if json_match:
return json.loads(json_match.group())
else:
# Fallback parsing
return self.fallback_parse(response_text)
except:
return self.fallback_parse(response_text)
def fallback_parse(self, text: str) -> Dict:
"""Fallback parsing if JSON extraction fails"""
return {
'complex_queries': re.findall(r'"([^"]+\?)"', text),
'recommendations': [text],
'gaps': []
}
def analyze_content_depth(self) -> Dict:
"""Analyze content depth and multi-hop potential"""
depth_analysis = {
'content_scores': {},
'hub_potential': [],
'orphan_content': [],
'semantic_clusters': []
}
# Calculate content depth scores
for node_id, data in self.content_graph.nodes(data=True):
if data['type'] in ['post', 'page']:
score = self.calculate_content_depth(data)
depth_analysis['content_scores'][node_id] = {
'title': data['title'],
'url': data['url'],
'depth_score': score,
'word_count': len(data.get('content', '').split()),
'internal_links': self.content_graph.out_degree(node_id),
'backlinks': self.content_graph.in_degree(node_id)
}
# Identify hub potential
for node_id, score_data in depth_analysis['content_scores'].items():
if score_data['internal_links'] > 5 and score_data['depth_score'] > 0.7:
depth_analysis['hub_potential'].append(score_data)
# Find orphan content
for node_id, score_data in depth_analysis['content_scores'].items():
if score_data['backlinks'] == 0 and score_data['internal_links'] < 2:
depth_analysis['orphan_content'].append(score_data)
# Identify semantic clusters
depth_analysis['semantic_clusters'] = self.identify_semantic_clusters()
return depth_analysis
def calculate_content_depth(self, node_data: Dict) -> float:
"""Calculate a depth score for content"""
score = 0.0
# Word count factor
word_count = len(node_data.get('content', '').split())
if word_count > 2000:
score += 0.3
elif word_count > 1000:
score += 0.2
elif word_count > 500:
score += 0.1
# Heading structure (simplified)
content = node_data.get('content', '')
h2_count = content.count('<h2') + content.count('## ')
h3_count = content.count('<h3') + content.count('### ')
if h2_count > 3:
score += 0.2
if h3_count > 5:
score += 0.1
# Media presence
if '<img' in content or '[gallery' in content:
score += 0.1
# Lists and structured data
if '<ul' in content or '<ol' in content or '- ' in content:
score += 0.1
# Schema markup indicators
if 'itemtype' in content or '@type' in content:
score += 0.2
return min(score, 1.0)
def identify_semantic_clusters(self) -> List[Dict]:
"""Identify semantic content clusters using TF-IDF"""
# Prepare content for vectorization
content_texts = []
node_ids = []
for node_id, data in self.content_graph.nodes(data=True):
if data['type'] in ['post', 'page'] and data.get('content'):
content_texts.append(data['content'])
node_ids.append(node_id)
if not content_texts:
return []
# Vectorize content
try:
tfidf_matrix = self.tfidf_vectorizer.fit_transform(content_texts)
# Calculate similarity matrix
similarity_matrix = cosine_similarity(tfidf_matrix)
# Identify clusters (simplified clustering)
clusters = []
visited = set()
for i in range(len(node_ids)):
if node_ids[i] in visited:
continue
cluster = {
'center': node_ids[i],
'members': [],
'theme': self.extract_cluster_theme(i, tfidf_matrix)
}
for j in range(len(node_ids)):
if similarity_matrix[i][j] > 0.3: # Similarity threshold
cluster['members'].append({
'id': node_ids[j],
'similarity': float(similarity_matrix[i][j])
})
visited.add(node_ids[j])
if len(cluster['members']) > 1:
clusters.append(cluster)
return clusters
except Exception as e:
st.error(f"Error in semantic clustering: {e}")
return []
def extract_cluster_theme(self, doc_index: int, tfidf_matrix) -> List[str]:
"""Extract theme keywords for a cluster"""
feature_names = self.tfidf_vectorizer.get_feature_names_out()
doc_tfidf = tfidf_matrix[doc_index].toarray()[0]
# Get top 5 terms
top_indices = doc_tfidf.argsort()[-5:][::-1]
return [feature_names[i] for i in top_indices if doc_tfidf[i] > 0]
def generate_optimization_report(self, progress_callback=None) -> Dict:
"""Generate comprehensive optimization report"""
# Fetch and analyze content
if progress_callback:
progress_callback(0.2, "Fetching content...")
content = self.fetch_all_content()
if progress_callback:
progress_callback(0.4, "Building content graph...")
self.build_content_graph(content)
# Run analyses
if progress_callback:
progress_callback(0.6, "Analyzing query patterns...")
query_patterns = self.analyze_query_patterns()
if progress_callback:
progress_callback(0.8, "Analyzing content depth...")
depth_analysis = self.analyze_content_depth()
# Generate recommendations
if progress_callback:
progress_callback(0.9, "Generating recommendations...")
recommendations = self.generate_recommendations(query_patterns, depth_analysis)
# Compile report
report = {
'site_url': self.site_url,
'analysis_date': datetime.now().isoformat(),
'summary': {
'total_posts': len(content['posts']),
'total_pages': len(content['pages']),
'content_nodes': self.content_graph.number_of_nodes(),
'internal_links': self.content_graph.number_of_edges(),
'orphan_content': len(depth_analysis['orphan_content']),
'hub_pages': len(depth_analysis['hub_potential']),
'semantic_clusters': len(depth_analysis['semantic_clusters'])
},
'query_optimization': query_patterns,
'content_depth': depth_analysis,
'recommendations': recommendations,
'action_plan': self.create_action_plan(recommendations)
}
if progress_callback:
progress_callback(1.0, "Analysis complete!")
return report
def generate_recommendations(self, query_patterns: Dict, depth_analysis: Dict) -> List[Dict]:
"""Generate specific optimization recommendations"""
recommendations = []
# Query coverage recommendations
if 'gaps' in query_patterns:
for gap in query_patterns.get('gaps', []):
recommendations.append({
'type': 'content_gap',
'priority': 'high',
'action': 'Create new content',
'details': f"Create content to answer sub-query: {gap}",
'impact': 'Enables multi-hop reasoning path'
})
# Orphan content recommendations
for orphan in depth_analysis['orphan_content'][:5]: # Top 5
recommendations.append({
'type': 'orphan_content',
'priority': 'medium',
'action': 'Add internal links',
'details': f"Connect orphan content: {orphan['title']}",
'url': orphan['url'],
'impact': 'Improves content graph connectivity'
})
# Hub optimization
for hub in depth_analysis['hub_potential'][:3]: # Top 3
recommendations.append({
'type': 'hub_optimization',
'priority': 'high',
'action': 'Enhance hub page',
'details': f"Optimize hub potential: {hub['title']}",
'url': hub['url'],
'impact': 'Strengthens multi-source selection'
})
# Semantic cluster recommendations
for cluster in depth_analysis['semantic_clusters'][:3]: # Top 3
recommendations.append({
'type': 'semantic_bridge',
'priority': 'medium',
'action': 'Create semantic bridges',
'details': f"Link related content in cluster: {', '.join(cluster['theme'])}",
'impact': 'Enables query fan-out paths'
})
return recommendations
def create_action_plan(self, recommendations: List[Dict]) -> Dict:
"""Create prioritized action plan"""
action_plan = {
'immediate': [],
'short_term': [],
'long_term': []
}
for rec in recommendations:
if rec['priority'] == 'high':
action_plan['immediate'].append({
'action': rec['action'],
'details': rec['details'],
'expected_impact': rec['impact']
})
elif rec['priority'] == 'medium':
action_plan['short_term'].append({
'action': rec['action'],
'details': rec['details'],
'expected_impact': rec['impact']
})
else:
action_plan['long_term'].append({
'action': rec['action'],
'details': rec['details'],
'expected_impact': rec['impact']
})
return action_plan
# Streamlit UI
def main():
st.title("πŸ” WordPress SEO Query Fan-Out Analyzer")
st.markdown("Optimize your WordPress site for Google's AI Mode multi-hop reasoning")
# Sidebar
with st.sidebar:
st.header("βš™οΈ Configuration")
site_url = st.text_input(
"WordPress Site URL",
placeholder="https://example.com",
help="Enter the URL of your WordPress site"
)
claude_api_key = st.text_input(
"Claude API Key",
type="password",
placeholder="sk-ant-...",
help="Your Anthropic Claude API key"
)
st.markdown("---")
analyze_button = st.button("πŸš€ Start Analysis", type="primary", use_container_width=True)
st.markdown("---")
st.markdown("""
### πŸ“– About This Tool
This analyzer helps optimize your WordPress site for Google's AI-powered search features by:
- πŸ•ΈοΈ Mapping content relationships
- πŸ”Ž Identifying query patterns
- πŸ“Š Analyzing content depth
- 🎯 Finding optimization opportunities
- πŸ“ Generating actionable recommendations
""")
# Main content area
if analyze_button:
if not site_url or not claude_api_key:
st.error("Please provide both WordPress site URL and Claude API key")
return
# Validate URL
try:
result = urlparse(site_url)
if not all([result.scheme, result.netloc]):
st.error("Please enter a valid URL (e.g., https://example.com)")
return
except:
st.error("Invalid URL format")
return
# Initialize analyzer
with st.spinner("Initializing analyzer..."):
try:
analyzer = WordPressQueryFanOutAnalyzer(site_url, claude_api_key)
except Exception as e:
st.error(f"Failed to initialize analyzer: {e}")
return
# Progress tracking
progress_bar = st.progress(0)
status_text = st.empty()
def update_progress(progress, status):
progress_bar.progress(progress)
status_text.text(status)
# Run analysis
try:
report = analyzer.generate_optimization_report(progress_callback=update_progress)
# Clear progress indicators
progress_bar.empty()
status_text.empty()
# Display results in tabs
tab1, tab2, tab3, tab4, tab5 = st.tabs([
"πŸ“Š Overview",
"πŸ” Query Analysis",
"πŸ“ˆ Content Depth",
"πŸ’‘ Recommendations",
"πŸ“₯ Export"
])
with tab1:
st.header("Site Overview")
# Metrics
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Posts", report['summary']['total_posts'])
with col2:
st.metric("Total Pages", report['summary']['total_pages'])
with col3:
st.metric("Content Nodes", report['summary']['content_nodes'])
with col4:
st.metric("Internal Links", report['summary']['internal_links'])
col5, col6, col7, col8 = st.columns(4)
with col5:
st.metric("Orphan Content", report['summary']['orphan_content'],
delta="Need attention", delta_color="inverse")
with col6:
st.metric("Hub Pages", report['summary']['hub_pages'])
with col7:
st.metric("Semantic Clusters", report['summary']['semantic_clusters'])
with col8:
st.metric("Total Recommendations", len(report['recommendations']))
# Content graph visualization
st.subheader("Content Network Graph")
# Create a simple network visualization
if analyzer.content_graph.number_of_nodes() > 0:
# Create edge trace
edge_x = []
edge_y = []
# Use spring layout for positioning
pos = nx.spring_layout(analyzer.content_graph, k=1, iterations=50)
for edge in analyzer.content_graph.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines'
)
# Create node trace
node_x = []
node_y = []
node_text = []
node_colors = []
color_map = {
'post': '#1f77b4',
'page': '#ff7f0e',
'category': '#2ca02c',
'tag': '#d62728'
}
for node in analyzer.content_graph.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_data = analyzer.content_graph.nodes[node]
node_text.append(node_data.get('title', node_data.get('name', str(node)))[:30])
node_colors.append(color_map.get(node_data.get('type', 'post'), '#999'))
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
hoverinfo='text',
text=node_text,
textposition="top center",
marker=dict(
showscale=False,
colorscale='YlGnBu',
size=10,
color=node_colors,
line_width=2
)
)
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
showlegend=False,
hovermode='closest',
margin=dict(b=0, l=0, r=0, t=0),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
height=600
))
st.plotly_chart(fig, use_container_width=True)
with tab2:
st.header("Query Pattern Analysis")
query_data = report.get('query_optimization', {})
if query_data.get('complex_queries'):
st.subheader("🎯 Potential Complex Queries")
for i, query in enumerate(query_data['complex_queries'][:5], 1):
st.write(f"{i}. {query}")
if query_data.get('gaps'):
st.subheader("⚠️ Content Gaps")
for gap in query_data.get('gaps', []):
st.warning(f"Missing content for: {gap}")
if query_data.get('recommendations'):
st.subheader("πŸ“ Claude's Analysis")
for rec in query_data.get('recommendations', []):
st.info(rec)
with tab3:
st.header("Content Depth Analysis")
depth_data = report.get('content_depth', {})
# Hub pages
if depth_data.get('hub_potential'):
st.subheader("🌟 High-Potential Hub Pages")
hub_df = pd.DataFrame(depth_data['hub_potential'])
if not hub_df.empty:
hub_df = hub_df.sort_values('depth_score', ascending=False)
st.dataframe(
hub_df[['title', 'depth_score', 'internal_links', 'backlinks', 'word_count']],
use_container_width=True
)
# Orphan content
if depth_data.get('orphan_content'):
st.subheader("πŸ”— Orphan Content (Needs Linking)")
orphan_df = pd.DataFrame(depth_data['orphan_content'][:10])
if not orphan_df.empty:
st.dataframe(
orphan_df[['title', 'word_count', 'url']],
use_container_width=True
)
# Semantic clusters
if depth_data.get('semantic_clusters'):
st.subheader("🧩 Semantic Content Clusters")
for i, cluster in enumerate(depth_data['semantic_clusters'][:5], 1):
with st.expander(f"Cluster {i}: {', '.join(cluster.get('theme', []))}"):
st.write(f"**Theme Keywords:** {', '.join(cluster.get('theme', []))}")
st.write(f"**Number of related pages:** {len(cluster.get('members', []))}")
with tab4:
st.header("Optimization Recommendations")
# Action plan
action_plan = report.get('action_plan', {})
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("🚨 Immediate Actions")
for action in action_plan.get('immediate', []):
st.markdown(f"""
<div class="recommendation-card high-priority">
<strong>{action['action']}</strong><br>
{action['details']}<br>
<em>Impact: {action['expected_impact']}</em>
</div>
""", unsafe_allow_html=True)
with col2:
st.subheader("πŸ“… Short-term Actions")
for action in action_plan.get('short_term', []):
st.markdown(f"""
<div class="recommendation-card medium-priority">
<strong>{action['action']}</strong><br>
{action['details']}<br>
<em>Impact: {action['expected_impact']}</em>
</div>
""", unsafe_allow_html=True)
with col3:
st.subheader("πŸ“† Long-term Actions")
for action in action_plan.get('long_term', []):
st.markdown(f"""
<div class="recommendation-card low-priority">
<strong>{action['action']}</strong><br>
{action['details']}<br>
<em>Impact: {action['expected_impact']}</em>
</div>
""", unsafe_allow_html=True)
# Detailed recommendations
st.subheader("πŸ“‹ All Recommendations")
if report.get('recommendations'):
rec_df = pd.DataFrame(report['recommendations'])
st.dataframe(rec_df, use_container_width=True)
with tab5:
st.header("Export Report")
# JSON export
json_str = json.dumps(report, indent=2)
st.download_button(
label="πŸ“₯ Download Full Report (JSON)",
data=json_str,
file_name=f"seo_report_{site_url.replace('https://', '').replace('/', '_')}.json",
mime="application/json"
)
# CSV export of recommendations
if report.get('recommendations'):
rec_df = pd.DataFrame(report['recommendations'])
csv = rec_df.to_csv(index=False)
st.download_button(
label="πŸ“₯ Download Recommendations (CSV)",
data=csv,
file_name=f"recommendations_{site_url.replace('https://', '').replace('/', '_')}.csv",
mime="text/csv"
)
# Summary report
summary = f"""
# SEO Analysis Report
**Site:** {report['site_url']}
**Analysis Date:** {report['analysis_date']}
## Summary
- Total Posts: {report['summary']['total_posts']}
- Total Pages: {report['summary']['total_pages']}
- Content Nodes: {report['summary']['content_nodes']}
- Internal Links: {report['summary']['internal_links']}
- Orphan Content: {report['summary']['orphan_content']}
- Hub Pages: {report['summary']['hub_pages']}
- Semantic Clusters: {report['summary']['semantic_clusters']}
## Top Recommendations
{chr(10).join([f"- {rec['action']}: {rec['details']}" for rec in report['recommendations'][:5]])}
"""
st.download_button(
label="πŸ“₯ Download Summary (Markdown)",
data=summary,
file_name=f"summary_{site_url.replace('https://', '').replace('/', '_')}.md",
mime="text/markdown"
)
except Exception as e:
st.error(f"Analysis failed: {str(e)}")
st.exception(e)
else:
# Welcome screen
st.markdown("""
## Welcome to the WordPress SEO Query Fan-Out Analyzer! πŸ‘‹
This tool helps you optimize your WordPress site for Google's AI-powered search features
by analyzing your content structure and identifying opportunities for multi-hop reasoning paths.
### 🎯 What This Tool Does:
1. **Content Mapping** - Builds a comprehensive graph of your site's content relationships
2. **Query Analysis** - Uses Claude AI to identify complex queries your content could answer
3. **Depth Analysis** - Evaluates content quality and identifies hub pages
4. **Gap Detection** - Finds missing content that prevents complete query answers
5. **Recommendations** - Provides actionable steps to improve your SEO
### πŸš€ Getting Started:
1. Enter your WordPress site URL in the sidebar
2. Add your Claude API key (get one at [anthropic.com](https://www.anthropic.com))
3. Click "Start Analysis" and wait for the results
The analysis typically takes 2-5 minutes depending on your site size.
""")
if __name__ == "__main__":
main()