Spaces:
Running
Running
File size: 38,890 Bytes
9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f 4448285 9148e9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 |
import streamlit as st
import requests
import json
import networkx as nx
from urllib.parse import urlparse, urljoin
import time
from datetime import datetime
import anthropic
from typing import List, Dict, Set, Tuple
import re
from collections import defaultdict
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import logging
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from io import StringIO
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Page config
st.set_page_config(
page_title="WordPress SEO Query Analyzer",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.stTabs [data-baseweb="tab-list"] button [data-testid="stMarkdownContainer"] p {
font-size: 16px;
}
.metric-card {
background-color: #f0f2f6;
padding: 20px;
border-radius: 10px;
text-align: center;
}
.recommendation-card {
background-color: #e8f4f8;
padding: 15px;
border-radius: 8px;
margin-bottom: 10px;
border-left: 4px solid #1f77b4;
}
.high-priority {
border-left-color: #ff4444;
}
.medium-priority {
border-left-color: #ffaa44;
}
.low-priority {
border-left-color: #44ff44;
}
</style>
""", unsafe_allow_html=True)
class WordPressQueryFanOutAnalyzer:
"""Analyze WordPress sites for Google AI Mode query fan-out optimization"""
def __init__(self, site_url: str, claude_api_key: str):
self.site_url = site_url.rstrip('/')
self.api_base = f"{self.site_url}/wp-json/wp/v2"
self.claude = anthropic.Anthropic(api_key=claude_api_key)
self.content_graph = nx.DiGraph()
self.query_patterns = defaultdict(list)
self.content_cache = {}
self.tfidf_vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
def fetch_all_content(self, progress_callback=None) -> Dict:
"""Fetch all content from WordPress site"""
content = {
'posts': [],
'pages': [],
'categories': [],
'tags': [],
'media': []
}
# Fetch posts
if progress_callback:
progress_callback(0.1, "Fetching posts...")
content['posts'] = self.fetch_posts()
# Fetch pages
if progress_callback:
progress_callback(0.3, "Fetching pages...")
content['pages'] = self.fetch_pages()
# Fetch categories
if progress_callback:
progress_callback(0.5, "Fetching categories...")
content['categories'] = self.fetch_categories()
# Fetch tags
if progress_callback:
progress_callback(0.7, "Fetching tags...")
content['tags'] = self.fetch_tags()
# Fetch media
if progress_callback:
progress_callback(0.9, "Fetching media info...")
content['media'] = self.fetch_media_info()
if progress_callback:
progress_callback(1.0, "Content fetching complete!")
return content
def fetch_posts(self, per_page=100) -> List[Dict]:
"""Fetch all posts from WordPress"""
posts = []
page = 1
while True:
try:
response = requests.get(
f"{self.api_base}/posts",
params={'per_page': per_page, 'page': page, '_embed': True},
timeout=30
)
if response.status_code == 200:
batch = response.json()
if not batch:
break
posts.extend(batch)
page += 1
time.sleep(0.5) # Rate limiting
else:
break
except Exception as e:
st.error(f"Error fetching posts: {e}")
break
return posts
def fetch_pages(self, per_page=100) -> List[Dict]:
"""Fetch all pages from WordPress"""
pages = []
page = 1
while True:
try:
response = requests.get(
f"{self.api_base}/pages",
params={'per_page': per_page, 'page': page, '_embed': True},
timeout=30
)
if response.status_code == 200:
batch = response.json()
if not batch:
break
pages.extend(batch)
page += 1
time.sleep(0.5)
else:
break
except Exception as e:
st.error(f"Error fetching pages: {e}")
break
return pages
def fetch_categories(self) -> List[Dict]:
"""Fetch all categories"""
try:
response = requests.get(f"{self.api_base}/categories", params={'per_page': 100}, timeout=30)
return response.json() if response.status_code == 200 else []
except:
return []
def fetch_tags(self) -> List[Dict]:
"""Fetch all tags"""
try:
response = requests.get(f"{self.api_base}/tags", params={'per_page': 100}, timeout=30)
return response.json() if response.status_code == 200 else []
except:
return []
def fetch_media_info(self) -> List[Dict]:
"""Fetch media information"""
try:
response = requests.get(f"{self.api_base}/media", params={'per_page': 50}, timeout=30)
return response.json() if response.status_code == 200 else []
except:
return []
def build_content_graph(self, content: Dict) -> nx.DiGraph:
"""Build a graph representation of the site's content"""
# Add posts as nodes
for post in content['posts']:
self.content_graph.add_node(
post['id'],
type='post',
title=post['title']['rendered'],
url=post['link'],
content=self.clean_html(post['content']['rendered']),
excerpt=self.clean_html(post['excerpt']['rendered']),
categories=post.get('categories', []),
tags=post.get('tags', []),
date=post['date']
)
# Add pages as nodes
for page in content['pages']:
self.content_graph.add_node(
f"page_{page['id']}",
type='page',
title=page['title']['rendered'],
url=page['link'],
content=self.clean_html(page['content']['rendered']),
parent=page.get('parent', 0),
date=page['date']
)
# Build edges based on internal links
self.build_internal_link_edges()
# Build edges based on category/tag relationships
self.build_taxonomy_edges(content)
return self.content_graph
def clean_html(self, html: str) -> str:
"""Remove HTML tags and clean text"""
text = re.sub('<.*?>', '', html)
text = re.sub(r'\s+', ' ', text)
return text.strip()
def build_internal_link_edges(self):
"""Extract and build edges from internal links"""
for node_id, data in self.content_graph.nodes(data=True):
if 'content' in data:
# Extract internal links
links = re.findall(rf'{self.site_url}/[^"\'>\s]+', data['content'])
for link in links:
# Find the target node
for target_id, target_data in self.content_graph.nodes(data=True):
if target_data.get('url') == link:
self.content_graph.add_edge(node_id, target_id, type='internal_link')
break
def build_taxonomy_edges(self, content: Dict):
"""Build edges based on categories and tags"""
# Create category nodes
for cat in content['categories']:
self.content_graph.add_node(
f"cat_{cat['id']}",
type='category',
name=cat['name'],
slug=cat['slug']
)
# Create tag nodes
for tag in content['tags']:
self.content_graph.add_node(
f"tag_{tag['id']}",
type='tag',
name=tag['name'],
slug=tag['slug']
)
# Connect posts to categories and tags
for node_id, data in self.content_graph.nodes(data=True):
if data['type'] == 'post':
for cat_id in data.get('categories', []):
self.content_graph.add_edge(node_id, f"cat_{cat_id}", type='categorized_as')
for tag_id in data.get('tags', []):
self.content_graph.add_edge(node_id, f"tag_{tag_id}", type='tagged_as')
def analyze_query_patterns(self) -> Dict:
"""Analyze content for complex query patterns using Claude"""
patterns = {
'complex_queries': [],
'decompositions': {},
'coverage_analysis': {},
'opportunities': []
}
# Sample content for analysis
sample_content = self.get_content_sample()
# Analyze with Claude
prompt = f"""Analyze this WordPress site content for Google AI Mode query optimization opportunities.
Site URL: {self.site_url}
Content Sample:
{json.dumps(sample_content, indent=2)[:3000]}
Identify:
1. Complex queries users might ask that would trigger Google's query fan-out
2. How Google would decompose these queries into sub-queries
3. Which content currently answers which sub-queries
4. Gaps where sub-queries aren't answered
5. Multi-source optimization opportunities
Focus on queries that would require multiple hops of reasoning to answer fully.
Provide analysis in JSON format with:
- complex_queries: List of potential complex user queries
- decompositions: How each query would be broken down
- current_coverage: Which content addresses which sub-queries
- gaps: Missing sub-query content
- recommendations: Specific content to create"""
try:
response = self.claude.messages.create(
model="claude-3-opus-20240229",
max_tokens=4000,
messages=[{"role": "user", "content": prompt}]
)
# Parse Claude's response
analysis = self.parse_claude_response(response.content[0].text)
patterns.update(analysis)
except Exception as e:
st.error(f"Error analyzing with Claude: {e}")
return patterns
def get_content_sample(self) -> List[Dict]:
"""Get a representative sample of content"""
sample = []
for node_id, data in list(self.content_graph.nodes(data=True))[:20]:
if data['type'] in ['post', 'page']:
sample.append({
'title': data['title'],
'type': data['type'],
'excerpt': data.get('excerpt', '')[:200],
'url': data['url']
})
return sample
def parse_claude_response(self, response_text: str) -> Dict:
"""Parse Claude's response into structured data"""
try:
# Try to extract JSON from response
json_match = re.search(r'\{[\s\S]*\}', response_text)
if json_match:
return json.loads(json_match.group())
else:
# Fallback parsing
return self.fallback_parse(response_text)
except:
return self.fallback_parse(response_text)
def fallback_parse(self, text: str) -> Dict:
"""Fallback parsing if JSON extraction fails"""
return {
'complex_queries': re.findall(r'"([^"]+\?)"', text),
'recommendations': [text],
'gaps': []
}
def analyze_content_depth(self) -> Dict:
"""Analyze content depth and multi-hop potential"""
depth_analysis = {
'content_scores': {},
'hub_potential': [],
'orphan_content': [],
'semantic_clusters': []
}
# Calculate content depth scores
for node_id, data in self.content_graph.nodes(data=True):
if data['type'] in ['post', 'page']:
score = self.calculate_content_depth(data)
depth_analysis['content_scores'][node_id] = {
'title': data['title'],
'url': data['url'],
'depth_score': score,
'word_count': len(data.get('content', '').split()),
'internal_links': self.content_graph.out_degree(node_id),
'backlinks': self.content_graph.in_degree(node_id)
}
# Identify hub potential
for node_id, score_data in depth_analysis['content_scores'].items():
if score_data['internal_links'] > 5 and score_data['depth_score'] > 0.7:
depth_analysis['hub_potential'].append(score_data)
# Find orphan content
for node_id, score_data in depth_analysis['content_scores'].items():
if score_data['backlinks'] == 0 and score_data['internal_links'] < 2:
depth_analysis['orphan_content'].append(score_data)
# Identify semantic clusters
depth_analysis['semantic_clusters'] = self.identify_semantic_clusters()
return depth_analysis
def calculate_content_depth(self, node_data: Dict) -> float:
"""Calculate a depth score for content"""
score = 0.0
# Word count factor
word_count = len(node_data.get('content', '').split())
if word_count > 2000:
score += 0.3
elif word_count > 1000:
score += 0.2
elif word_count > 500:
score += 0.1
# Heading structure (simplified)
content = node_data.get('content', '')
h2_count = content.count('<h2') + content.count('## ')
h3_count = content.count('<h3') + content.count('### ')
if h2_count > 3:
score += 0.2
if h3_count > 5:
score += 0.1
# Media presence
if '<img' in content or '[gallery' in content:
score += 0.1
# Lists and structured data
if '<ul' in content or '<ol' in content or '- ' in content:
score += 0.1
# Schema markup indicators
if 'itemtype' in content or '@type' in content:
score += 0.2
return min(score, 1.0)
def identify_semantic_clusters(self) -> List[Dict]:
"""Identify semantic content clusters using TF-IDF"""
# Prepare content for vectorization
content_texts = []
node_ids = []
for node_id, data in self.content_graph.nodes(data=True):
if data['type'] in ['post', 'page'] and data.get('content'):
content_texts.append(data['content'])
node_ids.append(node_id)
if not content_texts:
return []
# Vectorize content
try:
tfidf_matrix = self.tfidf_vectorizer.fit_transform(content_texts)
# Calculate similarity matrix
similarity_matrix = cosine_similarity(tfidf_matrix)
# Identify clusters (simplified clustering)
clusters = []
visited = set()
for i in range(len(node_ids)):
if node_ids[i] in visited:
continue
cluster = {
'center': node_ids[i],
'members': [],
'theme': self.extract_cluster_theme(i, tfidf_matrix)
}
for j in range(len(node_ids)):
if similarity_matrix[i][j] > 0.3: # Similarity threshold
cluster['members'].append({
'id': node_ids[j],
'similarity': float(similarity_matrix[i][j])
})
visited.add(node_ids[j])
if len(cluster['members']) > 1:
clusters.append(cluster)
return clusters
except Exception as e:
st.error(f"Error in semantic clustering: {e}")
return []
def extract_cluster_theme(self, doc_index: int, tfidf_matrix) -> List[str]:
"""Extract theme keywords for a cluster"""
feature_names = self.tfidf_vectorizer.get_feature_names_out()
doc_tfidf = tfidf_matrix[doc_index].toarray()[0]
# Get top 5 terms
top_indices = doc_tfidf.argsort()[-5:][::-1]
return [feature_names[i] for i in top_indices if doc_tfidf[i] > 0]
def generate_optimization_report(self, progress_callback=None) -> Dict:
"""Generate comprehensive optimization report"""
# Fetch and analyze content
if progress_callback:
progress_callback(0.2, "Fetching content...")
content = self.fetch_all_content()
if progress_callback:
progress_callback(0.4, "Building content graph...")
self.build_content_graph(content)
# Run analyses
if progress_callback:
progress_callback(0.6, "Analyzing query patterns...")
query_patterns = self.analyze_query_patterns()
if progress_callback:
progress_callback(0.8, "Analyzing content depth...")
depth_analysis = self.analyze_content_depth()
# Generate recommendations
if progress_callback:
progress_callback(0.9, "Generating recommendations...")
recommendations = self.generate_recommendations(query_patterns, depth_analysis)
# Compile report
report = {
'site_url': self.site_url,
'analysis_date': datetime.now().isoformat(),
'summary': {
'total_posts': len(content['posts']),
'total_pages': len(content['pages']),
'content_nodes': self.content_graph.number_of_nodes(),
'internal_links': self.content_graph.number_of_edges(),
'orphan_content': len(depth_analysis['orphan_content']),
'hub_pages': len(depth_analysis['hub_potential']),
'semantic_clusters': len(depth_analysis['semantic_clusters'])
},
'query_optimization': query_patterns,
'content_depth': depth_analysis,
'recommendations': recommendations,
'action_plan': self.create_action_plan(recommendations)
}
if progress_callback:
progress_callback(1.0, "Analysis complete!")
return report
def generate_recommendations(self, query_patterns: Dict, depth_analysis: Dict) -> List[Dict]:
"""Generate specific optimization recommendations"""
recommendations = []
# Query coverage recommendations
if 'gaps' in query_patterns:
for gap in query_patterns.get('gaps', []):
recommendations.append({
'type': 'content_gap',
'priority': 'high',
'action': 'Create new content',
'details': f"Create content to answer sub-query: {gap}",
'impact': 'Enables multi-hop reasoning path'
})
# Orphan content recommendations
for orphan in depth_analysis['orphan_content'][:5]: # Top 5
recommendations.append({
'type': 'orphan_content',
'priority': 'medium',
'action': 'Add internal links',
'details': f"Connect orphan content: {orphan['title']}",
'url': orphan['url'],
'impact': 'Improves content graph connectivity'
})
# Hub optimization
for hub in depth_analysis['hub_potential'][:3]: # Top 3
recommendations.append({
'type': 'hub_optimization',
'priority': 'high',
'action': 'Enhance hub page',
'details': f"Optimize hub potential: {hub['title']}",
'url': hub['url'],
'impact': 'Strengthens multi-source selection'
})
# Semantic cluster recommendations
for cluster in depth_analysis['semantic_clusters'][:3]: # Top 3
recommendations.append({
'type': 'semantic_bridge',
'priority': 'medium',
'action': 'Create semantic bridges',
'details': f"Link related content in cluster: {', '.join(cluster['theme'])}",
'impact': 'Enables query fan-out paths'
})
return recommendations
def create_action_plan(self, recommendations: List[Dict]) -> Dict:
"""Create prioritized action plan"""
action_plan = {
'immediate': [],
'short_term': [],
'long_term': []
}
for rec in recommendations:
if rec['priority'] == 'high':
action_plan['immediate'].append({
'action': rec['action'],
'details': rec['details'],
'expected_impact': rec['impact']
})
elif rec['priority'] == 'medium':
action_plan['short_term'].append({
'action': rec['action'],
'details': rec['details'],
'expected_impact': rec['impact']
})
else:
action_plan['long_term'].append({
'action': rec['action'],
'details': rec['details'],
'expected_impact': rec['impact']
})
return action_plan
# Streamlit UI
def main():
st.title("π WordPress SEO Query Fan-Out Analyzer")
st.markdown("Optimize your WordPress site for Google's AI Mode multi-hop reasoning")
# Sidebar
with st.sidebar:
st.header("βοΈ Configuration")
site_url = st.text_input(
"WordPress Site URL",
placeholder="https://example.com",
help="Enter the URL of your WordPress site"
)
claude_api_key = st.text_input(
"Claude API Key",
type="password",
placeholder="sk-ant-...",
help="Your Anthropic Claude API key"
)
st.markdown("---")
analyze_button = st.button("π Start Analysis", type="primary", use_container_width=True)
st.markdown("---")
st.markdown("""
### π About This Tool
This analyzer helps optimize your WordPress site for Google's AI-powered search features by:
- πΈοΈ Mapping content relationships
- π Identifying query patterns
- π Analyzing content depth
- π― Finding optimization opportunities
- π Generating actionable recommendations
""")
# Main content area
if analyze_button:
if not site_url or not claude_api_key:
st.error("Please provide both WordPress site URL and Claude API key")
return
# Validate URL
try:
result = urlparse(site_url)
if not all([result.scheme, result.netloc]):
st.error("Please enter a valid URL (e.g., https://example.com)")
return
except:
st.error("Invalid URL format")
return
# Initialize analyzer
with st.spinner("Initializing analyzer..."):
try:
analyzer = WordPressQueryFanOutAnalyzer(site_url, claude_api_key)
except Exception as e:
st.error(f"Failed to initialize analyzer: {e}")
return
# Progress tracking
progress_bar = st.progress(0)
status_text = st.empty()
def update_progress(progress, status):
progress_bar.progress(progress)
status_text.text(status)
# Run analysis
try:
report = analyzer.generate_optimization_report(progress_callback=update_progress)
# Clear progress indicators
progress_bar.empty()
status_text.empty()
# Display results in tabs
tab1, tab2, tab3, tab4, tab5 = st.tabs([
"π Overview",
"π Query Analysis",
"π Content Depth",
"π‘ Recommendations",
"π₯ Export"
])
with tab1:
st.header("Site Overview")
# Metrics
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Posts", report['summary']['total_posts'])
with col2:
st.metric("Total Pages", report['summary']['total_pages'])
with col3:
st.metric("Content Nodes", report['summary']['content_nodes'])
with col4:
st.metric("Internal Links", report['summary']['internal_links'])
col5, col6, col7, col8 = st.columns(4)
with col5:
st.metric("Orphan Content", report['summary']['orphan_content'],
delta="Need attention", delta_color="inverse")
with col6:
st.metric("Hub Pages", report['summary']['hub_pages'])
with col7:
st.metric("Semantic Clusters", report['summary']['semantic_clusters'])
with col8:
st.metric("Total Recommendations", len(report['recommendations']))
# Content graph visualization
st.subheader("Content Network Graph")
# Create a simple network visualization
if analyzer.content_graph.number_of_nodes() > 0:
# Create edge trace
edge_x = []
edge_y = []
# Use spring layout for positioning
pos = nx.spring_layout(analyzer.content_graph, k=1, iterations=50)
for edge in analyzer.content_graph.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines'
)
# Create node trace
node_x = []
node_y = []
node_text = []
node_colors = []
color_map = {
'post': '#1f77b4',
'page': '#ff7f0e',
'category': '#2ca02c',
'tag': '#d62728'
}
for node in analyzer.content_graph.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_data = analyzer.content_graph.nodes[node]
node_text.append(node_data.get('title', node_data.get('name', str(node)))[:30])
node_colors.append(color_map.get(node_data.get('type', 'post'), '#999'))
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
hoverinfo='text',
text=node_text,
textposition="top center",
marker=dict(
showscale=False,
colorscale='YlGnBu',
size=10,
color=node_colors,
line_width=2
)
)
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
showlegend=False,
hovermode='closest',
margin=dict(b=0, l=0, r=0, t=0),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
height=600
))
st.plotly_chart(fig, use_container_width=True)
with tab2:
st.header("Query Pattern Analysis")
query_data = report.get('query_optimization', {})
if query_data.get('complex_queries'):
st.subheader("π― Potential Complex Queries")
for i, query in enumerate(query_data['complex_queries'][:5], 1):
st.write(f"{i}. {query}")
if query_data.get('gaps'):
st.subheader("β οΈ Content Gaps")
for gap in query_data.get('gaps', []):
st.warning(f"Missing content for: {gap}")
if query_data.get('recommendations'):
st.subheader("π Claude's Analysis")
for rec in query_data.get('recommendations', []):
st.info(rec)
with tab3:
st.header("Content Depth Analysis")
depth_data = report.get('content_depth', {})
# Hub pages
if depth_data.get('hub_potential'):
st.subheader("π High-Potential Hub Pages")
hub_df = pd.DataFrame(depth_data['hub_potential'])
if not hub_df.empty:
hub_df = hub_df.sort_values('depth_score', ascending=False)
st.dataframe(
hub_df[['title', 'depth_score', 'internal_links', 'backlinks', 'word_count']],
use_container_width=True
)
# Orphan content
if depth_data.get('orphan_content'):
st.subheader("π Orphan Content (Needs Linking)")
orphan_df = pd.DataFrame(depth_data['orphan_content'][:10])
if not orphan_df.empty:
st.dataframe(
orphan_df[['title', 'word_count', 'url']],
use_container_width=True
)
# Semantic clusters
if depth_data.get('semantic_clusters'):
st.subheader("π§© Semantic Content Clusters")
for i, cluster in enumerate(depth_data['semantic_clusters'][:5], 1):
with st.expander(f"Cluster {i}: {', '.join(cluster.get('theme', []))}"):
st.write(f"**Theme Keywords:** {', '.join(cluster.get('theme', []))}")
st.write(f"**Number of related pages:** {len(cluster.get('members', []))}")
with tab4:
st.header("Optimization Recommendations")
# Action plan
action_plan = report.get('action_plan', {})
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("π¨ Immediate Actions")
for action in action_plan.get('immediate', []):
st.markdown(f"""
<div class="recommendation-card high-priority">
<strong>{action['action']}</strong><br>
{action['details']}<br>
<em>Impact: {action['expected_impact']}</em>
</div>
""", unsafe_allow_html=True)
with col2:
st.subheader("π
Short-term Actions")
for action in action_plan.get('short_term', []):
st.markdown(f"""
<div class="recommendation-card medium-priority">
<strong>{action['action']}</strong><br>
{action['details']}<br>
<em>Impact: {action['expected_impact']}</em>
</div>
""", unsafe_allow_html=True)
with col3:
st.subheader("π Long-term Actions")
for action in action_plan.get('long_term', []):
st.markdown(f"""
<div class="recommendation-card low-priority">
<strong>{action['action']}</strong><br>
{action['details']}<br>
<em>Impact: {action['expected_impact']}</em>
</div>
""", unsafe_allow_html=True)
# Detailed recommendations
st.subheader("π All Recommendations")
if report.get('recommendations'):
rec_df = pd.DataFrame(report['recommendations'])
st.dataframe(rec_df, use_container_width=True)
with tab5:
st.header("Export Report")
# JSON export
json_str = json.dumps(report, indent=2)
st.download_button(
label="π₯ Download Full Report (JSON)",
data=json_str,
file_name=f"seo_report_{site_url.replace('https://', '').replace('/', '_')}.json",
mime="application/json"
)
# CSV export of recommendations
if report.get('recommendations'):
rec_df = pd.DataFrame(report['recommendations'])
csv = rec_df.to_csv(index=False)
st.download_button(
label="π₯ Download Recommendations (CSV)",
data=csv,
file_name=f"recommendations_{site_url.replace('https://', '').replace('/', '_')}.csv",
mime="text/csv"
)
# Summary report
summary = f"""
# SEO Analysis Report
**Site:** {report['site_url']}
**Analysis Date:** {report['analysis_date']}
## Summary
- Total Posts: {report['summary']['total_posts']}
- Total Pages: {report['summary']['total_pages']}
- Content Nodes: {report['summary']['content_nodes']}
- Internal Links: {report['summary']['internal_links']}
- Orphan Content: {report['summary']['orphan_content']}
- Hub Pages: {report['summary']['hub_pages']}
- Semantic Clusters: {report['summary']['semantic_clusters']}
## Top Recommendations
{chr(10).join([f"- {rec['action']}: {rec['details']}" for rec in report['recommendations'][:5]])}
"""
st.download_button(
label="π₯ Download Summary (Markdown)",
data=summary,
file_name=f"summary_{site_url.replace('https://', '').replace('/', '_')}.md",
mime="text/markdown"
)
except Exception as e:
st.error(f"Analysis failed: {str(e)}")
st.exception(e)
else:
# Welcome screen
st.markdown("""
## Welcome to the WordPress SEO Query Fan-Out Analyzer! π
This tool helps you optimize your WordPress site for Google's AI-powered search features
by analyzing your content structure and identifying opportunities for multi-hop reasoning paths.
### π― What This Tool Does:
1. **Content Mapping** - Builds a comprehensive graph of your site's content relationships
2. **Query Analysis** - Uses Claude AI to identify complex queries your content could answer
3. **Depth Analysis** - Evaluates content quality and identifies hub pages
4. **Gap Detection** - Finds missing content that prevents complete query answers
5. **Recommendations** - Provides actionable steps to improve your SEO
### π Getting Started:
1. Enter your WordPress site URL in the sidebar
2. Add your Claude API key (get one at [anthropic.com](https://www.anthropic.com))
3. Click "Start Analysis" and wait for the results
The analysis typically takes 2-5 minutes depending on your site size.
""")
if __name__ == "__main__":
main() |