ocrsensitive / app /utils.py
mashaelalbu's picture
Update app/utils.py
228fbeb verified
import os
import pandas as pd
from transformers import AutoModel, AutoTokenizer
from PIL import Image, ImageEnhance, ImageFilter
import torch
import logging
from transformers import BertTokenizer
import nltk
import requests
import io
logger = logging.getLogger(__name__)
class OCRModel:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(OCRModel, cls).__new__(cls)
cls._instance.initialize()
return cls._instance
def initialize(self):
try:
logger.info("Initializing OCR model...")
try:
self.tokenizer = AutoTokenizer.from_pretrained(
'stepfun-ai/GOT-OCR2_0',
trust_remote_code=True,
use_fast=False
)
except Exception as e:
logger.warning(f"Standard tokenizer failed, trying BertTokenizer: {str(e)}")
self.tokenizer = BertTokenizer.from_pretrained(
'stepfun-ai/GOT-OCR2_0',
trust_remote_code=True
)
self.model = AutoModel.from_pretrained(
'stepfun-ai/GOT-OCR2_0',
trust_remote_code=True,
low_cpu_mem_usage=True,
device_map='auto',
use_safetensors=True
)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = self.model.eval().to(self.device)
logger.info("Model initialization completed successfully")
except Exception as e:
logger.error(f"Error initializing model: {str(e)}", exc_info=True)
raise
def preprocess_image(self, image):
"""تحسين جودة الصورة لتحسين استخراج النص"""
try:
if image.mode != 'RGB':
image = image.convert('RGB')
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.5)
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.5)
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.2)
image = image.filter(ImageFilter.SMOOTH)
return image
except Exception as e:
logger.error(f"Error in image preprocessing: {str(e)}", exc_info=True)
raise
def process_image(self, image):
try:
logger.info("Starting image processing")
processed_image = self.preprocess_image(image)
temp_image_path = "temp_ocr_image.jpg"
processed_image.save(temp_image_path)
result = self.model.chat(self.tokenizer, temp_image_path, ocr_type='format')
logger.info(f"Successfully extracted text: {result[:100]}...")
if os.path.exists(temp_image_path):
os.remove(temp_image_path)
return result.strip()
except Exception as e:
logger.error(f"Error in OCR processing: {str(e)}", exc_info=True)
if 'temp_image_path' in locals() and os.path.exists(temp_image_path):
os.remove(temp_image_path)
return f"Error processing image: {str(e)}"
class AllergyAnalyzer:
def __init__(self, dataset_path):
self.dataset_path = dataset_path
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
try:
nltk.data.find('tokenizers/punkt_tab')
except LookupError:
nltk.download('punkt_tab')
self.allergy_data = self.load_allergy_data()
if self.allergy_data is None:
raise ValueError("Failed to load allergy data from dataset")
self.ocr_model = OCRModel()
def load_allergy_data(self):
"""تحميل بيانات الحساسيات من ملف Excel"""
try:
# قراءة ملف الإكسل مع تحديد أن الصف الأول هو العناوين
df = pd.read_excel(self.dataset_path, header=0)
allergy_dict = {}
for index, row in df.iterrows():
# الحصول على اسم الحساسية من العمود الأول
allergy_name = str(row.iloc[0]).strip().lower()
if not allergy_name:
continue
# الحصول على المكونات من الأعمدة التالية
ingredients = []
for col in range(1, len(row)):
ingredient = str(row.iloc[col]).strip().lower()
if ingredient and ingredient != 'nan':
ingredients.append(ingredient)
allergy_dict[allergy_name] = ingredients
logger.info(f"Successfully loaded allergy data with {len(allergy_dict)} categories")
return allergy_dict
except Exception as e:
logger.error(f"Error loading allergy data: {str(e)}", exc_info=True)
return None
def tokenize_text(self, text):
"""تقسيم النص إلى كلمات"""
try:
tokens = nltk.word_tokenize(text)
return [w.lower() for w in tokens if w.isalpha()]
except Exception as e:
logger.error(f"Error tokenizing text: {str(e)}")
return []
def check_allergen_in_excel(self, token, user_allergies):
"""التحقق من وجود التوكن في ملف الإكسل مع مراعاة حساسيات المستخدم"""
try:
if not self.allergy_data:
return None
for allergy_name, ingredients in self.allergy_data.items():
# نتحقق فقط من الحساسيات التي يهتم بها المستخدم
if allergy_name.lower() in user_allergies and token in ingredients:
return allergy_name
return None
except Exception as e:
logger.error(f"Error checking allergen in Excel: {str(e)}")
return None
def check_allergy_risk(self, ingredient, api_key, user_allergies):
"""الاستعلام من Claude API عن الحساسيات مع مراعاة حساسيات المستخدم"""
try:
# نطلب من Claude التحقق فقط للحساسيات المحددة من المستخدم
prompt = f"""
You are a professional food safety expert. Analyze the ingredient '{ingredient}' and determine if it belongs to any of these allergen categories:
{', '.join(user_allergies)}.
Respond only with the category name if found or 'None' if not found.
"""
url = "https://api.anthropic.com/v1/messages"
headers = {
"x-api-key": api_key,
"content-type": "application/json",
"anthropic-version": "2023-06-01"
}
data = {
"model": "claude-3-opus-20240229",
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 10
}
response = requests.post(url, json=data, headers=headers)
response.raise_for_status()
response_json = response.json()
if "content" in response_json and isinstance(response_json["content"], list):
result = response_json["content"][0]["text"].strip().lower()
# نتحقق فقط من الحساسيات التي يهتم بها المستخدم
if result in user_allergies:
return result
return None
except Exception as e:
logger.error(f"Error querying Claude API: {str(e)}")
return None
def analyze_image(self, image, claude_api_key=None, user_allergies=None):
"""تحليل الصورة للكشف عن الحساسيات مع مراعاة حساسيات المستخدم"""
try:
if not self.allergy_data:
raise ValueError("Allergy data not loaded")
if not user_allergies:
raise ValueError("User allergies not provided")
# استخراج النص من الصورة
extracted_text = self.ocr_model.process_image(image)
if extracted_text.startswith("Error processing image"):
raise ValueError(extracted_text)
logger.info(f"Extracted text: {extracted_text[:200]}...")
# تحويل النص إلى tokens
tokens = self.tokenize_text(extracted_text)
if not tokens:
raise ValueError("No tokens extracted from text")
database_matches = {}
claude_matches = {}
for token in tokens:
# البحث أولاً في قاعدة البيانات للحساسيات المحددة فقط
allergy = self.check_allergen_in_excel(token, user_allergies)
if allergy:
if allergy not in database_matches:
database_matches[allergy] = set() # استخدام set لمنع التكرار
database_matches[allergy].add(token)
elif claude_api_key:
# إذا لم يُوجد في ملف الإكسل، استدعِ Claude API للحساسيات المحددة فقط
allergy = self.check_allergy_risk(token, claude_api_key, user_allergies)
if allergy:
if allergy not in claude_matches:
claude_matches[allergy] = set() # استخدام set لمنع التكرار
claude_matches[allergy].add(token)
# إنشاء قائمة الحساسيات المكتشفة مع كل الكلمات المرتبطة بها
detected_allergens = []
seen_allergens = set()
# إضافة الحساسيات من قاعدة البيانات أولاً
for allergy, words in database_matches.items():
if allergy not in seen_allergens:
detected_allergens.append({
"allergen": allergy,
"related_words": list(words) # تحويل set إلى list
})
seen_allergens.add(allergy)
# إضافة الحساسيات من Claude API
for allergy, words in claude_matches.items():
if allergy not in seen_allergens:
detected_allergens.append({
"allergen": allergy,
"related_words": list(words) # تحويل set إلى list
})
seen_allergens.add(allergy)
return {
"extracted_text": extracted_text,
"detected_allergens": detected_allergens,
"database_matches": {k: list(v) for k, v in database_matches.items()}, # تحويل sets إلى lists
"claude_matches": {k: list(v) for k, v in claude_matches.items()}, # تحويل sets إلى lists
"analyzed_tokens": tokens,
"success": True
}
except Exception as e:
logger.error(f"Error analyzing image: {str(e)}", exc_info=True)
return {
"error": str(e),
"success": False
}