File size: 11,968 Bytes
86ffb63
bd59453
86ffb63
 
 
 
c7898d4
bd59453
 
 
86ffb63
 
 
 
 
20268d8
0c4a4d0
 
 
 
 
6587984
86ffb63
 
904394e
c7898d4
904394e
 
c10f4ec
904394e
c7898d4
904394e
 
c7898d4
 
c10f4ec
c7898d4
904394e
 
86ffb63
c10f4ec
86ffb63
 
6587984
c7898d4
86ffb63
 
904394e
 
86ffb63
 
 
 
 
 
c7898d4
86ffb63
bd59453
86ffb63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd59453
86ffb63
 
 
 
bd59453
86ffb63
 
bd59453
 
 
 
 
 
 
 
 
 
55ed0b4
bd59453
 
 
 
 
 
cd685cd
 
 
 
b6b208f
 
 
 
990142e
 
55ed0b4
 
b1c0c81
bd59453
 
 
 
55ed0b4
 
990142e
bd59453
 
 
55ed0b4
 
 
 
86ffb63
55ed0b4
 
 
 
 
 
 
 
 
 
bd59453
990142e
bd59453
 
55ed0b4
bd59453
 
 
55ed0b4
 
 
 
 
 
bd59453
afd56c2
 
55ed0b4
 
 
 
 
afd56c2
 
55ed0b4
 
 
 
 
bd59453
afd56c2
 
1d79ca2
afd56c2
55ed0b4
afd56c2
 
 
55ed0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
1d79ca2
55ed0b4
1d79ca2
990142e
1d79ca2
990142e
55ed0b4
afd56c2
 
55ed0b4
 
990142e
1d79ca2
 
990142e
55ed0b4
1d79ca2
228fbeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ed0b4
228fbeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c70cb8
228fbeb
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import os
import pandas as pd
from transformers import AutoModel, AutoTokenizer
from PIL import Image, ImageEnhance, ImageFilter
import torch
import logging
from transformers import BertTokenizer
import nltk
import requests
import io

logger = logging.getLogger(__name__)

class OCRModel:
    _instance = None
    
    def __new__(cls):
        if cls._instance is None:
            cls._instance = super(OCRModel, cls).__new__(cls)
            cls._instance.initialize()
        return cls._instance
    
    def initialize(self):
        try:
            logger.info("Initializing OCR model...")
            
            try:
                self.tokenizer = AutoTokenizer.from_pretrained(
                    'stepfun-ai/GOT-OCR2_0',
                    trust_remote_code=True,
                    use_fast=False
                )
            except Exception as e:
                logger.warning(f"Standard tokenizer failed, trying BertTokenizer: {str(e)}")
                self.tokenizer = BertTokenizer.from_pretrained(
                    'stepfun-ai/GOT-OCR2_0',
                    trust_remote_code=True
                )
                
            self.model = AutoModel.from_pretrained(
                'stepfun-ai/GOT-OCR2_0',
                trust_remote_code=True,
                low_cpu_mem_usage=True,
                device_map='auto',
                use_safetensors=True
            )
            
            self.device = "cuda" if torch.cuda.is_available() else "cpu"
            self.model = self.model.eval().to(self.device)
            
            logger.info("Model initialization completed successfully")
            
        except Exception as e:
            logger.error(f"Error initializing model: {str(e)}", exc_info=True)
            raise
            
    def preprocess_image(self, image):
        """تحسين جودة الصورة لتحسين استخراج النص"""
        try:
            if image.mode != 'RGB':
                image = image.convert('RGB')

            enhancer = ImageEnhance.Contrast(image)
            image = enhancer.enhance(1.5)

            enhancer = ImageEnhance.Sharpness(image)
            image = enhancer.enhance(1.5)

            enhancer = ImageEnhance.Brightness(image)
            image = enhancer.enhance(1.2)

            image = image.filter(ImageFilter.SMOOTH)

            return image
        except Exception as e:
            logger.error(f"Error in image preprocessing: {str(e)}", exc_info=True)
            raise

    def process_image(self, image):
        try:
            logger.info("Starting image processing")
            
            processed_image = self.preprocess_image(image)
            temp_image_path = "temp_ocr_image.jpg"
            processed_image.save(temp_image_path)
            
            result = self.model.chat(self.tokenizer, temp_image_path, ocr_type='format')
            logger.info(f"Successfully extracted text: {result[:100]}...")
            
            if os.path.exists(temp_image_path):
                os.remove(temp_image_path)
            
            return result.strip()
            
        except Exception as e:
            logger.error(f"Error in OCR processing: {str(e)}", exc_info=True)
            if 'temp_image_path' in locals() and os.path.exists(temp_image_path):
                os.remove(temp_image_path)
            return f"Error processing image: {str(e)}"

class AllergyAnalyzer:
    def __init__(self, dataset_path):
        self.dataset_path = dataset_path
        try:
            nltk.data.find('tokenizers/punkt')
        except LookupError:
            nltk.download('punkt')
        try:
            nltk.data.find('tokenizers/punkt_tab')
        except LookupError:
            nltk.download('punkt_tab')
        
        self.allergy_data = self.load_allergy_data()
        if self.allergy_data is None:
            raise ValueError("Failed to load allergy data from dataset")
        self.ocr_model = OCRModel()
    
    def load_allergy_data(self):
        """تحميل بيانات الحساسيات من ملف Excel"""
        try:
            # قراءة ملف الإكسل مع تحديد أن الصف الأول هو العناوين
            df = pd.read_excel(self.dataset_path, header=0)
            
            allergy_dict = {}
            
            for index, row in df.iterrows():
                # الحصول على اسم الحساسية من العمود الأول
                allergy_name = str(row.iloc[0]).strip().lower()
                if not allergy_name:
                    continue
                
                # الحصول على المكونات من الأعمدة التالية
                ingredients = []
                for col in range(1, len(row)):
                    ingredient = str(row.iloc[col]).strip().lower()
                    if ingredient and ingredient != 'nan':
                        ingredients.append(ingredient)
                
                allergy_dict[allergy_name] = ingredients
            
            logger.info(f"Successfully loaded allergy data with {len(allergy_dict)} categories")
            return allergy_dict
        
        except Exception as e:
            logger.error(f"Error loading allergy data: {str(e)}", exc_info=True)
            return None
    
    def tokenize_text(self, text):
        """تقسيم النص إلى كلمات"""
        try:
            tokens = nltk.word_tokenize(text)
            return [w.lower() for w in tokens if w.isalpha()]
        except Exception as e:
            logger.error(f"Error tokenizing text: {str(e)}")
            return []
    
    def check_allergen_in_excel(self, token, user_allergies):
        """التحقق من وجود التوكن في ملف الإكسل مع مراعاة حساسيات المستخدم"""
        try:
            if not self.allergy_data:
                return None
                
            for allergy_name, ingredients in self.allergy_data.items():
                # نتحقق فقط من الحساسيات التي يهتم بها المستخدم
                if allergy_name.lower() in user_allergies and token in ingredients:
                    return allergy_name
            return None
        except Exception as e:
            logger.error(f"Error checking allergen in Excel: {str(e)}")
            return None
    
    def check_allergy_risk(self, ingredient, api_key, user_allergies):
        """الاستعلام من Claude API عن الحساسيات مع مراعاة حساسيات المستخدم"""
        try:
            # نطلب من Claude التحقق فقط للحساسيات المحددة من المستخدم
            prompt = f"""
You are a professional food safety expert. Analyze the ingredient '{ingredient}' and determine if it belongs to any of these allergen categories: 
{', '.join(user_allergies)}. 
Respond only with the category name if found or 'None' if not found.
"""
            url = "https://api.anthropic.com/v1/messages"
            headers = {
                "x-api-key": api_key,
                "content-type": "application/json",
                "anthropic-version": "2023-06-01"
            }
            
            data = {
                "model": "claude-3-opus-20240229",
                "messages": [{"role": "user", "content": prompt}],
                "max_tokens": 10
            }
            
            response = requests.post(url, json=data, headers=headers)
            response.raise_for_status()
            
            response_json = response.json()
            
            if "content" in response_json and isinstance(response_json["content"], list):
                result = response_json["content"][0]["text"].strip().lower()
                # نتحقق فقط من الحساسيات التي يهتم بها المستخدم
                if result in user_allergies:
                    return result
                return None
                
        except Exception as e:
            logger.error(f"Error querying Claude API: {str(e)}")
        
        return None
    
    def analyze_image(self, image, claude_api_key=None, user_allergies=None):
        """تحليل الصورة للكشف عن الحساسيات مع مراعاة حساسيات المستخدم"""
        try:
            if not self.allergy_data:
                raise ValueError("Allergy data not loaded")
            
            if not user_allergies:
                raise ValueError("User allergies not provided")
            
            # استخراج النص من الصورة
            extracted_text = self.ocr_model.process_image(image)
            if extracted_text.startswith("Error processing image"):
                raise ValueError(extracted_text)
            
            logger.info(f"Extracted text: {extracted_text[:200]}...")
            
            # تحويل النص إلى tokens
            tokens = self.tokenize_text(extracted_text)
            if not tokens:
                raise ValueError("No tokens extracted from text")
            
            database_matches = {}
            claude_matches = {}
            
            for token in tokens:
                # البحث أولاً في قاعدة البيانات للحساسيات المحددة فقط
                allergy = self.check_allergen_in_excel(token, user_allergies)
                if allergy:
                    if allergy not in database_matches:
                        database_matches[allergy] = set()  # استخدام set لمنع التكرار
                    database_matches[allergy].add(token)
                elif claude_api_key:
                    # إذا لم يُوجد في ملف الإكسل، استدعِ Claude API للحساسيات المحددة فقط
                    allergy = self.check_allergy_risk(token, claude_api_key, user_allergies)
                    if allergy:
                        if allergy not in claude_matches:
                            claude_matches[allergy] = set()  # استخدام set لمنع التكرار
                        claude_matches[allergy].add(token)
            
            # إنشاء قائمة الحساسيات المكتشفة مع كل الكلمات المرتبطة بها
            detected_allergens = []
            seen_allergens = set()
            
            # إضافة الحساسيات من قاعدة البيانات أولاً
            for allergy, words in database_matches.items():
                if allergy not in seen_allergens:
                    detected_allergens.append({
                        "allergen": allergy,
                        "related_words": list(words)  # تحويل set إلى list
                    })
                    seen_allergens.add(allergy)
            
            # إضافة الحساسيات من Claude API
            for allergy, words in claude_matches.items():
                if allergy not in seen_allergens:
                    detected_allergens.append({
                        "allergen": allergy,
                        "related_words": list(words)  # تحويل set إلى list
                    })
                    seen_allergens.add(allergy)
            
            return {
                "extracted_text": extracted_text,
                "detected_allergens": detected_allergens,
                "database_matches": {k: list(v) for k, v in database_matches.items()},  # تحويل sets إلى lists
                "claude_matches": {k: list(v) for k, v in claude_matches.items()},  # تحويل sets إلى lists
                "analyzed_tokens": tokens,
                "success": True
            }
        
        except Exception as e:
            logger.error(f"Error analyzing image: {str(e)}", exc_info=True)
            return {
                "error": str(e),
                "success": False
            }