Spaces:
Sleeping
Sleeping
File size: 11,968 Bytes
86ffb63 bd59453 86ffb63 c7898d4 bd59453 86ffb63 20268d8 0c4a4d0 6587984 86ffb63 904394e c7898d4 904394e c10f4ec 904394e c7898d4 904394e c7898d4 c10f4ec c7898d4 904394e 86ffb63 c10f4ec 86ffb63 6587984 c7898d4 86ffb63 904394e 86ffb63 c7898d4 86ffb63 bd59453 86ffb63 bd59453 86ffb63 bd59453 86ffb63 bd59453 55ed0b4 bd59453 cd685cd b6b208f 990142e 55ed0b4 b1c0c81 bd59453 55ed0b4 990142e bd59453 55ed0b4 86ffb63 55ed0b4 bd59453 990142e bd59453 55ed0b4 bd59453 55ed0b4 bd59453 afd56c2 55ed0b4 afd56c2 55ed0b4 bd59453 afd56c2 1d79ca2 afd56c2 55ed0b4 afd56c2 55ed0b4 1d79ca2 55ed0b4 1d79ca2 990142e 1d79ca2 990142e 55ed0b4 afd56c2 55ed0b4 990142e 1d79ca2 990142e 55ed0b4 1d79ca2 228fbeb 55ed0b4 228fbeb 0c70cb8 228fbeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import os
import pandas as pd
from transformers import AutoModel, AutoTokenizer
from PIL import Image, ImageEnhance, ImageFilter
import torch
import logging
from transformers import BertTokenizer
import nltk
import requests
import io
logger = logging.getLogger(__name__)
class OCRModel:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(OCRModel, cls).__new__(cls)
cls._instance.initialize()
return cls._instance
def initialize(self):
try:
logger.info("Initializing OCR model...")
try:
self.tokenizer = AutoTokenizer.from_pretrained(
'stepfun-ai/GOT-OCR2_0',
trust_remote_code=True,
use_fast=False
)
except Exception as e:
logger.warning(f"Standard tokenizer failed, trying BertTokenizer: {str(e)}")
self.tokenizer = BertTokenizer.from_pretrained(
'stepfun-ai/GOT-OCR2_0',
trust_remote_code=True
)
self.model = AutoModel.from_pretrained(
'stepfun-ai/GOT-OCR2_0',
trust_remote_code=True,
low_cpu_mem_usage=True,
device_map='auto',
use_safetensors=True
)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = self.model.eval().to(self.device)
logger.info("Model initialization completed successfully")
except Exception as e:
logger.error(f"Error initializing model: {str(e)}", exc_info=True)
raise
def preprocess_image(self, image):
"""تحسين جودة الصورة لتحسين استخراج النص"""
try:
if image.mode != 'RGB':
image = image.convert('RGB')
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.5)
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.5)
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.2)
image = image.filter(ImageFilter.SMOOTH)
return image
except Exception as e:
logger.error(f"Error in image preprocessing: {str(e)}", exc_info=True)
raise
def process_image(self, image):
try:
logger.info("Starting image processing")
processed_image = self.preprocess_image(image)
temp_image_path = "temp_ocr_image.jpg"
processed_image.save(temp_image_path)
result = self.model.chat(self.tokenizer, temp_image_path, ocr_type='format')
logger.info(f"Successfully extracted text: {result[:100]}...")
if os.path.exists(temp_image_path):
os.remove(temp_image_path)
return result.strip()
except Exception as e:
logger.error(f"Error in OCR processing: {str(e)}", exc_info=True)
if 'temp_image_path' in locals() and os.path.exists(temp_image_path):
os.remove(temp_image_path)
return f"Error processing image: {str(e)}"
class AllergyAnalyzer:
def __init__(self, dataset_path):
self.dataset_path = dataset_path
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
try:
nltk.data.find('tokenizers/punkt_tab')
except LookupError:
nltk.download('punkt_tab')
self.allergy_data = self.load_allergy_data()
if self.allergy_data is None:
raise ValueError("Failed to load allergy data from dataset")
self.ocr_model = OCRModel()
def load_allergy_data(self):
"""تحميل بيانات الحساسيات من ملف Excel"""
try:
# قراءة ملف الإكسل مع تحديد أن الصف الأول هو العناوين
df = pd.read_excel(self.dataset_path, header=0)
allergy_dict = {}
for index, row in df.iterrows():
# الحصول على اسم الحساسية من العمود الأول
allergy_name = str(row.iloc[0]).strip().lower()
if not allergy_name:
continue
# الحصول على المكونات من الأعمدة التالية
ingredients = []
for col in range(1, len(row)):
ingredient = str(row.iloc[col]).strip().lower()
if ingredient and ingredient != 'nan':
ingredients.append(ingredient)
allergy_dict[allergy_name] = ingredients
logger.info(f"Successfully loaded allergy data with {len(allergy_dict)} categories")
return allergy_dict
except Exception as e:
logger.error(f"Error loading allergy data: {str(e)}", exc_info=True)
return None
def tokenize_text(self, text):
"""تقسيم النص إلى كلمات"""
try:
tokens = nltk.word_tokenize(text)
return [w.lower() for w in tokens if w.isalpha()]
except Exception as e:
logger.error(f"Error tokenizing text: {str(e)}")
return []
def check_allergen_in_excel(self, token, user_allergies):
"""التحقق من وجود التوكن في ملف الإكسل مع مراعاة حساسيات المستخدم"""
try:
if not self.allergy_data:
return None
for allergy_name, ingredients in self.allergy_data.items():
# نتحقق فقط من الحساسيات التي يهتم بها المستخدم
if allergy_name.lower() in user_allergies and token in ingredients:
return allergy_name
return None
except Exception as e:
logger.error(f"Error checking allergen in Excel: {str(e)}")
return None
def check_allergy_risk(self, ingredient, api_key, user_allergies):
"""الاستعلام من Claude API عن الحساسيات مع مراعاة حساسيات المستخدم"""
try:
# نطلب من Claude التحقق فقط للحساسيات المحددة من المستخدم
prompt = f"""
You are a professional food safety expert. Analyze the ingredient '{ingredient}' and determine if it belongs to any of these allergen categories:
{', '.join(user_allergies)}.
Respond only with the category name if found or 'None' if not found.
"""
url = "https://api.anthropic.com/v1/messages"
headers = {
"x-api-key": api_key,
"content-type": "application/json",
"anthropic-version": "2023-06-01"
}
data = {
"model": "claude-3-opus-20240229",
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 10
}
response = requests.post(url, json=data, headers=headers)
response.raise_for_status()
response_json = response.json()
if "content" in response_json and isinstance(response_json["content"], list):
result = response_json["content"][0]["text"].strip().lower()
# نتحقق فقط من الحساسيات التي يهتم بها المستخدم
if result in user_allergies:
return result
return None
except Exception as e:
logger.error(f"Error querying Claude API: {str(e)}")
return None
def analyze_image(self, image, claude_api_key=None, user_allergies=None):
"""تحليل الصورة للكشف عن الحساسيات مع مراعاة حساسيات المستخدم"""
try:
if not self.allergy_data:
raise ValueError("Allergy data not loaded")
if not user_allergies:
raise ValueError("User allergies not provided")
# استخراج النص من الصورة
extracted_text = self.ocr_model.process_image(image)
if extracted_text.startswith("Error processing image"):
raise ValueError(extracted_text)
logger.info(f"Extracted text: {extracted_text[:200]}...")
# تحويل النص إلى tokens
tokens = self.tokenize_text(extracted_text)
if not tokens:
raise ValueError("No tokens extracted from text")
database_matches = {}
claude_matches = {}
for token in tokens:
# البحث أولاً في قاعدة البيانات للحساسيات المحددة فقط
allergy = self.check_allergen_in_excel(token, user_allergies)
if allergy:
if allergy not in database_matches:
database_matches[allergy] = set() # استخدام set لمنع التكرار
database_matches[allergy].add(token)
elif claude_api_key:
# إذا لم يُوجد في ملف الإكسل، استدعِ Claude API للحساسيات المحددة فقط
allergy = self.check_allergy_risk(token, claude_api_key, user_allergies)
if allergy:
if allergy not in claude_matches:
claude_matches[allergy] = set() # استخدام set لمنع التكرار
claude_matches[allergy].add(token)
# إنشاء قائمة الحساسيات المكتشفة مع كل الكلمات المرتبطة بها
detected_allergens = []
seen_allergens = set()
# إضافة الحساسيات من قاعدة البيانات أولاً
for allergy, words in database_matches.items():
if allergy not in seen_allergens:
detected_allergens.append({
"allergen": allergy,
"related_words": list(words) # تحويل set إلى list
})
seen_allergens.add(allergy)
# إضافة الحساسيات من Claude API
for allergy, words in claude_matches.items():
if allergy not in seen_allergens:
detected_allergens.append({
"allergen": allergy,
"related_words": list(words) # تحويل set إلى list
})
seen_allergens.add(allergy)
return {
"extracted_text": extracted_text,
"detected_allergens": detected_allergens,
"database_matches": {k: list(v) for k, v in database_matches.items()}, # تحويل sets إلى lists
"claude_matches": {k: list(v) for k, v in claude_matches.items()}, # تحويل sets إلى lists
"analyzed_tokens": tokens,
"success": True
}
except Exception as e:
logger.error(f"Error analyzing image: {str(e)}", exc_info=True)
return {
"error": str(e),
"success": False
} |