arabic-summarizer-classifier / seq2seq_summarizer.py
moabos
feat: replace current tesnorflow seq2seq model with improved pytorch implementation
07edbf0
import torch
import torch.nn as nn
import numpy as np
from typing import Dict, List, Any, Optional
from safetensors.torch import load_file
from preprocessor import preprocess_for_summarization
from collections import Counter
import re
import os
class Seq2SeqTokenizer:
"""Arabic tokenizer for Seq2Seq tasks"""
def __init__(self, vocab_size=10000):
self.vocab_size = vocab_size
self.word2idx = {'<PAD>': 0, '<SOS>': 1, '<EOS>': 2, '<UNK>': 3}
self.idx2word = {0: '<PAD>', 1: '<SOS>', 2: '<EOS>', 3: '<UNK>'}
self.vocab_built = False
def clean_arabic_text(self, text):
if text is None or text == "":
return ""
text = str(text)
text = preprocess_for_summarization(text)
text = re.sub(r'[^\u0600-\u06FF\u0750-\u077F\s\d.,!?():\-]', ' ', text)
text = re.sub(r'\s+', ' ', text.strip())
return text
def build_vocab_from_texts(self, texts, min_freq=2):
word_counts = Counter()
total_words = 0
for text in texts:
cleaned = self.clean_arabic_text(text)
words = cleaned.split()
word_counts.update(words)
total_words += len(words)
filtered_words = {word: count for word, count in word_counts.items()
if count >= min_freq and len(word.strip()) > 0}
most_common = sorted(filtered_words.items(), key=lambda x: x[1], reverse=True)
vocab_words = most_common[:self.vocab_size - 4]
for word, count in vocab_words:
if word not in self.word2idx:
idx = len(self.word2idx)
self.word2idx[word] = idx
self.idx2word[idx] = word
self.vocab_built = True
return len(self.word2idx)
def encode(self, text, max_len, add_special=False):
cleaned = self.clean_arabic_text(text)
words = cleaned.split()
if add_special:
words = ['<SOS>'] + words + ['<EOS>']
indices = []
for word in words[:max_len]:
indices.append(self.word2idx.get(word, self.word2idx['<UNK>']))
while len(indices) < max_len:
indices.append(self.word2idx['<PAD>'])
return indices[:max_len]
def decode(self, indices, skip_special=True):
words = []
for idx in indices:
if isinstance(idx, torch.Tensor):
idx = idx.item()
word = self.idx2word.get(int(idx), '<UNK>')
if skip_special:
if word in ['<PAD>', '<SOS>']:
continue
elif word == '<EOS>':
break
if word != '<UNK>' or not skip_special:
words.append(word)
return ' '.join(words)
class Seq2SeqModel(nn.Module):
def __init__(self, vocab_size=10000, embedding_dim=128, encoder_hidden=256, decoder_hidden=256):
super().__init__()
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.encoder_hidden = encoder_hidden
self.decoder_hidden = decoder_hidden
self.encoder_embedding = nn.Embedding(vocab_size, embedding_dim)
self.decoder_embedding = nn.Embedding(vocab_size, embedding_dim)
self.encoder_lstm = nn.LSTM(embedding_dim, encoder_hidden, batch_first=True)
self.decoder_lstm = nn.LSTM(embedding_dim + encoder_hidden, decoder_hidden, batch_first=True)
self.attention = nn.Linear(encoder_hidden + decoder_hidden, decoder_hidden)
self.context_combine = nn.Linear(encoder_hidden + decoder_hidden, decoder_hidden)
self.output_proj = nn.Linear(decoder_hidden, vocab_size)
def forward(self, src_seq, tgt_seq=None, max_len=50):
batch_size = src_seq.size(0)
src_len = src_seq.size(1)
src_embedded = self.encoder_embedding(src_seq)
encoder_outputs, (encoder_hidden, encoder_cell) = self.encoder_lstm(src_embedded)
if tgt_seq is not None:
tgt_embedded = self.decoder_embedding(tgt_seq)
encoder_context = encoder_hidden[-1].unsqueeze(1).repeat(1, tgt_seq.size(1), 1)
decoder_input = torch.cat([tgt_embedded, encoder_context], dim=2)
decoder_outputs, _ = self.decoder_lstm(decoder_input, (encoder_hidden, encoder_cell))
outputs = self.output_proj(decoder_outputs)
return outputs
else:
outputs = []
decoder_hidden = encoder_hidden
decoder_cell = encoder_cell
decoder_input = torch.ones(batch_size, 1, dtype=torch.long, device=src_seq.device)
for _ in range(max_len):
tgt_embedded = self.decoder_embedding(decoder_input)
encoder_context = encoder_hidden[-1].unsqueeze(1)
decoder_input_combined = torch.cat([tgt_embedded, encoder_context], dim=2)
decoder_output, (decoder_hidden, decoder_cell) = self.decoder_lstm(
decoder_input_combined, (decoder_hidden, decoder_cell)
)
output = self.output_proj(decoder_output)
outputs.append(output)
decoder_input = torch.argmax(output, dim=2)
if decoder_input.item() == 2:
break
return torch.cat(outputs, dim=1) if outputs else torch.zeros(batch_size, 1, self.vocab_size)
class Seq2SeqSummarizer:
def __init__(self, model_path: str):
self.model_path = model_path
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Seq2Seq Summarizer: Using device: {self.device}")
self.tokenizer = Seq2SeqTokenizer(vocab_size=10000)
self._load_model()
def _load_model(self):
try:
print(f"Seq2Seq Summarizer: Loading model from {self.model_path}")
state_dict = load_file(self.model_path)
vocab_size, embedding_dim = state_dict['encoder_embedding.weight'].shape
encoder_hidden = state_dict['encoder_lstm.weight_hh_l0'].shape[1]
decoder_hidden = state_dict['decoder_lstm.weight_hh_l0'].shape[1]
print(f"Model architecture: vocab={vocab_size}, emb={embedding_dim}, enc_h={encoder_hidden}, dec_h={decoder_hidden}")
self.model = Seq2SeqModel(vocab_size, embedding_dim, encoder_hidden, decoder_hidden)
self.model.load_state_dict(state_dict, strict=True)
self.model.to(self.device)
self.model.eval()
self._build_basic_vocab()
print("Seq2Seq Summarizer: Model loaded successfully")
except Exception as e:
raise RuntimeError(f"Error loading seq2seq model: {e}")
def _build_basic_vocab(self):
basic_arabic_words = [
'ููŠ', 'ู…ู†', 'ุฅู„ู‰', 'ุนู„ู‰', 'ู‡ุฐุง', 'ู‡ุฐู‡', 'ุงู„ุชูŠ', 'ุงู„ุฐูŠ', 'ูƒุงู†', 'ูƒุงู†ุช',
'ูŠูƒูˆู†', 'ุชูƒูˆู†', 'ู‚ุงู„', 'ู‚ุงู„ุช', 'ูŠู‚ูˆู„', 'ุชู‚ูˆู„', 'ุจุนุฏ', 'ู‚ุจู„', 'ุฃู†', 'ุฃู†ู‡',
'ู…ุง', 'ู„ุง', 'ู†ุนู…', 'ูƒู„', 'ุจุนุถ', 'ุฌู…ูŠุน', 'ู‡ู†ุงูƒ', 'ู‡ู†ุง', 'ุญูŠุซ', 'ูƒูŠู',
'ู…ุชู‰', 'ุฃูŠู†', 'ู„ู…ุงุฐุง', 'ูˆุงู„ุฐูŠ', 'ูˆุงู„ุชูŠ', 'ุฃูŠุถุง', 'ูƒุฐู„ูƒ', 'ุญูˆู„', 'ุฎู„ุงู„', 'ุนู†ุฏ'
]
for i, word in enumerate(basic_arabic_words):
if len(self.tokenizer.word2idx) < self.tokenizer.vocab_size:
idx = len(self.tokenizer.word2idx)
self.tokenizer.word2idx[word] = idx
self.tokenizer.idx2word[idx] = word
self.tokenizer.vocab_built = True
def _generate_summary(self, text: str, max_length: int = 50) -> str:
try:
src_tokens = self.tokenizer.encode(text, max_len=100, add_special=False)
src_tensor = torch.tensor([src_tokens], dtype=torch.long, device=self.device)
with torch.no_grad():
output = self.model(src_tensor, max_len=max_length)
if output.numel() > 0:
predicted_ids = torch.argmax(output, dim=-1)
predicted_ids = predicted_ids[0].cpu().numpy()
summary = self.tokenizer.decode(predicted_ids, skip_special=True)
if summary.strip() and len(summary.strip()) > 5 and 'ู…ุชุงุญ' not in summary:
return summary.strip()
sentences = re.split(r'[.!ุŸ\n]+', text)
sentences = [s.strip() for s in sentences if s.strip() and len(s.strip()) > 10]
unique_sentences = []
for sent in sentences:
if not any(sent.strip() == existing.strip() for existing in unique_sentences):
unique_sentences.append(sent)
if len(unique_sentences) >= 2:
return '. '.join(unique_sentences[:2]) + '.'
elif len(unique_sentences) == 1:
return unique_sentences[0] + '.'
else:
return text[:150] + "..." if len(text) > 150 else text
except Exception as e:
print(f"Seq2Seq generation error: {e}")
# Same improved fallback logic
sentences = re.split(r'[.!ุŸ\n]+', text)
sentences = [s.strip() for s in sentences if s.strip() and len(s.strip()) > 10]
unique_sentences = []
for sent in sentences:
if not any(sent.strip() == existing.strip() for existing in unique_sentences):
unique_sentences.append(sent)
if len(unique_sentences) >= 2:
return '. '.join(unique_sentences[:2]) + '.'
elif len(unique_sentences) == 1:
return unique_sentences[0] + '.'
else:
return text[:150] + "..." if len(text) > 150 else text
def summarize(self, text: str, num_sentences: int = 3) -> Dict[str, Any]:
print(f"Seq2Seq Summarizer: Processing text with {len(text)} characters")
cleaned_text = preprocess_for_summarization(text)
print(f"Seq2Seq Summarizer: After preprocessing: '{cleaned_text[:100]}...'")
sentences = re.split(r'[.!ุŸ\n]+', cleaned_text)
sentences = [s.strip() for s in sentences if s.strip()]
print(f"Seq2Seq Summarizer: Found {len(sentences)} sentences")
original_sentence_count = len(sentences)
target_length = min(num_sentences * 15, 50)
generated_summary = self._generate_summary(cleaned_text, max_length=target_length)
print(f"Seq2Seq Summarizer: Generated summary: '{generated_summary[:100]}...'")
summary_sentences = re.split(r'[.!ุŸ\n]+', generated_summary)
summary_sentences = [s.strip() for s in summary_sentences if s.strip()]
if len(summary_sentences) < num_sentences and len(sentences) > len(summary_sentences):
remaining_needed = num_sentences - len(summary_sentences)
additional_sentences = sentences[:remaining_needed]
summary_sentences.extend(additional_sentences)
summary_sentences = summary_sentences[:num_sentences]
final_summary = ' '.join(summary_sentences)
dummy_scores = [1.0] * len(sentences)
selected_indices = list(range(min(len(sentences), len(summary_sentences))))
return {
"summary": final_summary,
"original_sentence_count": original_sentence_count,
"summary_sentence_count": len(summary_sentences),
"sentences": sentences,
"selected_indices": selected_indices,
"sentence_scores": dummy_scores,
"top_sentence_scores": [1.0] * len(summary_sentences),
"generated_summary": generated_summary,
"model_type": "seq2seq"
}