File size: 12,251 Bytes
07edbf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch
import torch.nn as nn
import numpy as np
from typing import Dict, List, Any, Optional
from safetensors.torch import load_file
from preprocessor import preprocess_for_summarization
from collections import Counter
import re
import os


class Seq2SeqTokenizer:
    """Arabic tokenizer for Seq2Seq tasks"""
    
    def __init__(self, vocab_size=10000):
        self.vocab_size = vocab_size
        self.word2idx = {'<PAD>': 0, '<SOS>': 1, '<EOS>': 2, '<UNK>': 3}
        self.idx2word = {0: '<PAD>', 1: '<SOS>', 2: '<EOS>', 3: '<UNK>'}
        self.vocab_built = False

    def clean_arabic_text(self, text):
        if text is None or text == "":
            return ""
        text = str(text)

        text = preprocess_for_summarization(text)
        text = re.sub(r'[^\u0600-\u06FF\u0750-\u077F\s\d.,!?():\-]', ' ', text)
        text = re.sub(r'\s+', ' ', text.strip())

        return text

    def build_vocab_from_texts(self, texts, min_freq=2):
        word_counts = Counter()
        total_words = 0

        for text in texts:
            cleaned = self.clean_arabic_text(text)
            words = cleaned.split()
            word_counts.update(words)
            total_words += len(words)

        filtered_words = {word: count for word, count in word_counts.items()
                         if count >= min_freq and len(word.strip()) > 0}

        most_common = sorted(filtered_words.items(), key=lambda x: x[1], reverse=True)
        vocab_words = most_common[:self.vocab_size - 4]

        for word, count in vocab_words:
            if word not in self.word2idx:
                idx = len(self.word2idx)
                self.word2idx[word] = idx
                self.idx2word[idx] = word

        self.vocab_built = True
        return len(self.word2idx)

    def encode(self, text, max_len, add_special=False):
        cleaned = self.clean_arabic_text(text)
        words = cleaned.split()

        if add_special:
            words = ['<SOS>'] + words + ['<EOS>']

        indices = []
        for word in words[:max_len]:
            indices.append(self.word2idx.get(word, self.word2idx['<UNK>']))

        while len(indices) < max_len:
            indices.append(self.word2idx['<PAD>'])

        return indices[:max_len]

    def decode(self, indices, skip_special=True):
        words = []
        for idx in indices:
            if isinstance(idx, torch.Tensor):
                idx = idx.item()

            word = self.idx2word.get(int(idx), '<UNK>')

            if skip_special:
                if word in ['<PAD>', '<SOS>']:
                    continue
                elif word == '<EOS>':
                    break

            if word != '<UNK>' or not skip_special:
                words.append(word)

        return ' '.join(words)


class Seq2SeqModel(nn.Module):
    
    def __init__(self, vocab_size=10000, embedding_dim=128, encoder_hidden=256, decoder_hidden=256):
        super().__init__()
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.encoder_hidden = encoder_hidden
        self.decoder_hidden = decoder_hidden
        
        self.encoder_embedding = nn.Embedding(vocab_size, embedding_dim)
        self.decoder_embedding = nn.Embedding(vocab_size, embedding_dim)
        
        self.encoder_lstm = nn.LSTM(embedding_dim, encoder_hidden, batch_first=True)
        self.decoder_lstm = nn.LSTM(embedding_dim + encoder_hidden, decoder_hidden, batch_first=True)
        
        self.attention = nn.Linear(encoder_hidden + decoder_hidden, decoder_hidden)
        self.context_combine = nn.Linear(encoder_hidden + decoder_hidden, decoder_hidden)
        self.output_proj = nn.Linear(decoder_hidden, vocab_size)
        
    def forward(self, src_seq, tgt_seq=None, max_len=50):
        batch_size = src_seq.size(0)
        src_len = src_seq.size(1)
        
        src_embedded = self.encoder_embedding(src_seq)
        encoder_outputs, (encoder_hidden, encoder_cell) = self.encoder_lstm(src_embedded)
        
        if tgt_seq is not None:
            tgt_embedded = self.decoder_embedding(tgt_seq)
            encoder_context = encoder_hidden[-1].unsqueeze(1).repeat(1, tgt_seq.size(1), 1)
            decoder_input = torch.cat([tgt_embedded, encoder_context], dim=2)
            
            decoder_outputs, _ = self.decoder_lstm(decoder_input, (encoder_hidden, encoder_cell))
            outputs = self.output_proj(decoder_outputs)
            return outputs
        else:
            outputs = []
            decoder_hidden = encoder_hidden
            decoder_cell = encoder_cell
            
            decoder_input = torch.ones(batch_size, 1, dtype=torch.long, device=src_seq.device)
            
            for _ in range(max_len):
                tgt_embedded = self.decoder_embedding(decoder_input)
                encoder_context = encoder_hidden[-1].unsqueeze(1)
                decoder_input_combined = torch.cat([tgt_embedded, encoder_context], dim=2)
                
                decoder_output, (decoder_hidden, decoder_cell) = self.decoder_lstm(
                    decoder_input_combined, (decoder_hidden, decoder_cell)
                )
                
                output = self.output_proj(decoder_output)
                outputs.append(output)
                
                decoder_input = torch.argmax(output, dim=2)
                
                if decoder_input.item() == 2:
                    break
            
            return torch.cat(outputs, dim=1) if outputs else torch.zeros(batch_size, 1, self.vocab_size)


class Seq2SeqSummarizer:
    
    def __init__(self, model_path: str):
        self.model_path = model_path
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        print(f"Seq2Seq Summarizer: Using device: {self.device}")
        
        self.tokenizer = Seq2SeqTokenizer(vocab_size=10000)
        self._load_model()
    
    def _load_model(self):
        try:
            print(f"Seq2Seq Summarizer: Loading model from {self.model_path}")
            state_dict = load_file(self.model_path)
            
            vocab_size, embedding_dim = state_dict['encoder_embedding.weight'].shape
            encoder_hidden = state_dict['encoder_lstm.weight_hh_l0'].shape[1]
            decoder_hidden = state_dict['decoder_lstm.weight_hh_l0'].shape[1]
            
            print(f"Model architecture: vocab={vocab_size}, emb={embedding_dim}, enc_h={encoder_hidden}, dec_h={decoder_hidden}")
            
            self.model = Seq2SeqModel(vocab_size, embedding_dim, encoder_hidden, decoder_hidden)
            
            self.model.load_state_dict(state_dict, strict=True)
            self.model.to(self.device)
            self.model.eval()
            
            self._build_basic_vocab()
            
            print("Seq2Seq Summarizer: Model loaded successfully")
            
        except Exception as e:
            raise RuntimeError(f"Error loading seq2seq model: {e}")
    
    def _build_basic_vocab(self):
        basic_arabic_words = [
            'ููŠ', 'ู…ู†', 'ุฅู„ู‰', 'ุนู„ู‰', 'ู‡ุฐุง', 'ู‡ุฐู‡', 'ุงู„ุชูŠ', 'ุงู„ุฐูŠ', 'ูƒุงู†', 'ูƒุงู†ุช',
            'ูŠูƒูˆู†', 'ุชูƒูˆู†', 'ู‚ุงู„', 'ู‚ุงู„ุช', 'ูŠู‚ูˆู„', 'ุชู‚ูˆู„', 'ุจุนุฏ', 'ู‚ุจู„', 'ุฃู†', 'ุฃู†ู‡',
            'ู…ุง', 'ู„ุง', 'ู†ุนู…', 'ูƒู„', 'ุจุนุถ', 'ุฌู…ูŠุน', 'ู‡ู†ุงูƒ', 'ู‡ู†ุง', 'ุญูŠุซ', 'ูƒูŠู',
            'ู…ุชู‰', 'ุฃูŠู†', 'ู„ู…ุงุฐุง', 'ูˆุงู„ุฐูŠ', 'ูˆุงู„ุชูŠ', 'ุฃูŠุถุง', 'ูƒุฐู„ูƒ', 'ุญูˆู„', 'ุฎู„ุงู„', 'ุนู†ุฏ'
        ]
        
        for i, word in enumerate(basic_arabic_words):
            if len(self.tokenizer.word2idx) < self.tokenizer.vocab_size:
                idx = len(self.tokenizer.word2idx)
                self.tokenizer.word2idx[word] = idx
                self.tokenizer.idx2word[idx] = word
        
        self.tokenizer.vocab_built = True
    
    def _generate_summary(self, text: str, max_length: int = 50) -> str:
        try:
            src_tokens = self.tokenizer.encode(text, max_len=100, add_special=False)
            src_tensor = torch.tensor([src_tokens], dtype=torch.long, device=self.device)
            
            with torch.no_grad():
                output = self.model(src_tensor, max_len=max_length)
                
                if output.numel() > 0:
                    predicted_ids = torch.argmax(output, dim=-1)
                    predicted_ids = predicted_ids[0].cpu().numpy()
                    
                    summary = self.tokenizer.decode(predicted_ids, skip_special=True)
                    
                    if summary.strip() and len(summary.strip()) > 5 and 'ู…ุชุงุญ' not in summary:
                        return summary.strip()
            
            sentences = re.split(r'[.!ุŸ\n]+', text)
            sentences = [s.strip() for s in sentences if s.strip() and len(s.strip()) > 10]
            
            unique_sentences = []
            for sent in sentences:
                if not any(sent.strip() == existing.strip() for existing in unique_sentences):
                    unique_sentences.append(sent)
            
            if len(unique_sentences) >= 2:
                return '. '.join(unique_sentences[:2]) + '.'
            elif len(unique_sentences) == 1:
                return unique_sentences[0] + '.'
            else:
                return text[:150] + "..." if len(text) > 150 else text
            
        except Exception as e:
            print(f"Seq2Seq generation error: {e}")
            # Same improved fallback logic
            sentences = re.split(r'[.!ุŸ\n]+', text)
            sentences = [s.strip() for s in sentences if s.strip() and len(s.strip()) > 10]
            
            unique_sentences = []
            for sent in sentences:
                if not any(sent.strip() == existing.strip() for existing in unique_sentences):
                    unique_sentences.append(sent)
            
            if len(unique_sentences) >= 2:
                return '. '.join(unique_sentences[:2]) + '.'
            elif len(unique_sentences) == 1:
                return unique_sentences[0] + '.'
            else:
                return text[:150] + "..." if len(text) > 150 else text
    
    
    def summarize(self, text: str, num_sentences: int = 3) -> Dict[str, Any]:
        print(f"Seq2Seq Summarizer: Processing text with {len(text)} characters")
        
        cleaned_text = preprocess_for_summarization(text)
        print(f"Seq2Seq Summarizer: After preprocessing: '{cleaned_text[:100]}...'")
        
        sentences = re.split(r'[.!ุŸ\n]+', cleaned_text)
        sentences = [s.strip() for s in sentences if s.strip()]
        
        print(f"Seq2Seq Summarizer: Found {len(sentences)} sentences")
        original_sentence_count = len(sentences)
        
        target_length = min(num_sentences * 15, 50)
        generated_summary = self._generate_summary(cleaned_text, max_length=target_length)
        print(f"Seq2Seq Summarizer: Generated summary: '{generated_summary[:100]}...'")
        
        summary_sentences = re.split(r'[.!ุŸ\n]+', generated_summary)
        summary_sentences = [s.strip() for s in summary_sentences if s.strip()]
        
        if len(summary_sentences) < num_sentences and len(sentences) > len(summary_sentences):
            remaining_needed = num_sentences - len(summary_sentences)
            additional_sentences = sentences[:remaining_needed]
            summary_sentences.extend(additional_sentences)
        
        summary_sentences = summary_sentences[:num_sentences]
        final_summary = ' '.join(summary_sentences)
        
        dummy_scores = [1.0] * len(sentences)
        selected_indices = list(range(min(len(sentences), len(summary_sentences))))
        
        return {
            "summary": final_summary,
            "original_sentence_count": original_sentence_count,
            "summary_sentence_count": len(summary_sentences),
            "sentences": sentences,
            "selected_indices": selected_indices,
            "sentence_scores": dummy_scores,
            "top_sentence_scores": [1.0] * len(summary_sentences),
            "generated_summary": generated_summary,
            "model_type": "seq2seq"
        }