File size: 12,251 Bytes
07edbf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import torch
import torch.nn as nn
import numpy as np
from typing import Dict, List, Any, Optional
from safetensors.torch import load_file
from preprocessor import preprocess_for_summarization
from collections import Counter
import re
import os
class Seq2SeqTokenizer:
"""Arabic tokenizer for Seq2Seq tasks"""
def __init__(self, vocab_size=10000):
self.vocab_size = vocab_size
self.word2idx = {'<PAD>': 0, '<SOS>': 1, '<EOS>': 2, '<UNK>': 3}
self.idx2word = {0: '<PAD>', 1: '<SOS>', 2: '<EOS>', 3: '<UNK>'}
self.vocab_built = False
def clean_arabic_text(self, text):
if text is None or text == "":
return ""
text = str(text)
text = preprocess_for_summarization(text)
text = re.sub(r'[^\u0600-\u06FF\u0750-\u077F\s\d.,!?():\-]', ' ', text)
text = re.sub(r'\s+', ' ', text.strip())
return text
def build_vocab_from_texts(self, texts, min_freq=2):
word_counts = Counter()
total_words = 0
for text in texts:
cleaned = self.clean_arabic_text(text)
words = cleaned.split()
word_counts.update(words)
total_words += len(words)
filtered_words = {word: count for word, count in word_counts.items()
if count >= min_freq and len(word.strip()) > 0}
most_common = sorted(filtered_words.items(), key=lambda x: x[1], reverse=True)
vocab_words = most_common[:self.vocab_size - 4]
for word, count in vocab_words:
if word not in self.word2idx:
idx = len(self.word2idx)
self.word2idx[word] = idx
self.idx2word[idx] = word
self.vocab_built = True
return len(self.word2idx)
def encode(self, text, max_len, add_special=False):
cleaned = self.clean_arabic_text(text)
words = cleaned.split()
if add_special:
words = ['<SOS>'] + words + ['<EOS>']
indices = []
for word in words[:max_len]:
indices.append(self.word2idx.get(word, self.word2idx['<UNK>']))
while len(indices) < max_len:
indices.append(self.word2idx['<PAD>'])
return indices[:max_len]
def decode(self, indices, skip_special=True):
words = []
for idx in indices:
if isinstance(idx, torch.Tensor):
idx = idx.item()
word = self.idx2word.get(int(idx), '<UNK>')
if skip_special:
if word in ['<PAD>', '<SOS>']:
continue
elif word == '<EOS>':
break
if word != '<UNK>' or not skip_special:
words.append(word)
return ' '.join(words)
class Seq2SeqModel(nn.Module):
def __init__(self, vocab_size=10000, embedding_dim=128, encoder_hidden=256, decoder_hidden=256):
super().__init__()
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.encoder_hidden = encoder_hidden
self.decoder_hidden = decoder_hidden
self.encoder_embedding = nn.Embedding(vocab_size, embedding_dim)
self.decoder_embedding = nn.Embedding(vocab_size, embedding_dim)
self.encoder_lstm = nn.LSTM(embedding_dim, encoder_hidden, batch_first=True)
self.decoder_lstm = nn.LSTM(embedding_dim + encoder_hidden, decoder_hidden, batch_first=True)
self.attention = nn.Linear(encoder_hidden + decoder_hidden, decoder_hidden)
self.context_combine = nn.Linear(encoder_hidden + decoder_hidden, decoder_hidden)
self.output_proj = nn.Linear(decoder_hidden, vocab_size)
def forward(self, src_seq, tgt_seq=None, max_len=50):
batch_size = src_seq.size(0)
src_len = src_seq.size(1)
src_embedded = self.encoder_embedding(src_seq)
encoder_outputs, (encoder_hidden, encoder_cell) = self.encoder_lstm(src_embedded)
if tgt_seq is not None:
tgt_embedded = self.decoder_embedding(tgt_seq)
encoder_context = encoder_hidden[-1].unsqueeze(1).repeat(1, tgt_seq.size(1), 1)
decoder_input = torch.cat([tgt_embedded, encoder_context], dim=2)
decoder_outputs, _ = self.decoder_lstm(decoder_input, (encoder_hidden, encoder_cell))
outputs = self.output_proj(decoder_outputs)
return outputs
else:
outputs = []
decoder_hidden = encoder_hidden
decoder_cell = encoder_cell
decoder_input = torch.ones(batch_size, 1, dtype=torch.long, device=src_seq.device)
for _ in range(max_len):
tgt_embedded = self.decoder_embedding(decoder_input)
encoder_context = encoder_hidden[-1].unsqueeze(1)
decoder_input_combined = torch.cat([tgt_embedded, encoder_context], dim=2)
decoder_output, (decoder_hidden, decoder_cell) = self.decoder_lstm(
decoder_input_combined, (decoder_hidden, decoder_cell)
)
output = self.output_proj(decoder_output)
outputs.append(output)
decoder_input = torch.argmax(output, dim=2)
if decoder_input.item() == 2:
break
return torch.cat(outputs, dim=1) if outputs else torch.zeros(batch_size, 1, self.vocab_size)
class Seq2SeqSummarizer:
def __init__(self, model_path: str):
self.model_path = model_path
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Seq2Seq Summarizer: Using device: {self.device}")
self.tokenizer = Seq2SeqTokenizer(vocab_size=10000)
self._load_model()
def _load_model(self):
try:
print(f"Seq2Seq Summarizer: Loading model from {self.model_path}")
state_dict = load_file(self.model_path)
vocab_size, embedding_dim = state_dict['encoder_embedding.weight'].shape
encoder_hidden = state_dict['encoder_lstm.weight_hh_l0'].shape[1]
decoder_hidden = state_dict['decoder_lstm.weight_hh_l0'].shape[1]
print(f"Model architecture: vocab={vocab_size}, emb={embedding_dim}, enc_h={encoder_hidden}, dec_h={decoder_hidden}")
self.model = Seq2SeqModel(vocab_size, embedding_dim, encoder_hidden, decoder_hidden)
self.model.load_state_dict(state_dict, strict=True)
self.model.to(self.device)
self.model.eval()
self._build_basic_vocab()
print("Seq2Seq Summarizer: Model loaded successfully")
except Exception as e:
raise RuntimeError(f"Error loading seq2seq model: {e}")
def _build_basic_vocab(self):
basic_arabic_words = [
'ูู', 'ู
ู', 'ุฅูู', 'ุนูู', 'ูุฐุง', 'ูุฐู', 'ุงูุชู', 'ุงูุฐู', 'ูุงู', 'ูุงูุช',
'ูููู', 'ุชููู', 'ูุงู', 'ูุงูุช', 'ูููู', 'ุชููู', 'ุจุนุฏ', 'ูุจู', 'ุฃู', 'ุฃูู',
'ู
ุง', 'ูุง', 'ูุนู
', 'ูู', 'ุจุนุถ', 'ุฌู
ูุน', 'ููุงู', 'ููุง', 'ุญูุซ', 'ููู',
'ู
ุชู', 'ุฃูู', 'ูู
ุงุฐุง', 'ูุงูุฐู', 'ูุงูุชู', 'ุฃูุถุง', 'ูุฐูู', 'ุญูู', 'ุฎูุงู', 'ุนูุฏ'
]
for i, word in enumerate(basic_arabic_words):
if len(self.tokenizer.word2idx) < self.tokenizer.vocab_size:
idx = len(self.tokenizer.word2idx)
self.tokenizer.word2idx[word] = idx
self.tokenizer.idx2word[idx] = word
self.tokenizer.vocab_built = True
def _generate_summary(self, text: str, max_length: int = 50) -> str:
try:
src_tokens = self.tokenizer.encode(text, max_len=100, add_special=False)
src_tensor = torch.tensor([src_tokens], dtype=torch.long, device=self.device)
with torch.no_grad():
output = self.model(src_tensor, max_len=max_length)
if output.numel() > 0:
predicted_ids = torch.argmax(output, dim=-1)
predicted_ids = predicted_ids[0].cpu().numpy()
summary = self.tokenizer.decode(predicted_ids, skip_special=True)
if summary.strip() and len(summary.strip()) > 5 and 'ู
ุชุงุญ' not in summary:
return summary.strip()
sentences = re.split(r'[.!ุ\n]+', text)
sentences = [s.strip() for s in sentences if s.strip() and len(s.strip()) > 10]
unique_sentences = []
for sent in sentences:
if not any(sent.strip() == existing.strip() for existing in unique_sentences):
unique_sentences.append(sent)
if len(unique_sentences) >= 2:
return '. '.join(unique_sentences[:2]) + '.'
elif len(unique_sentences) == 1:
return unique_sentences[0] + '.'
else:
return text[:150] + "..." if len(text) > 150 else text
except Exception as e:
print(f"Seq2Seq generation error: {e}")
# Same improved fallback logic
sentences = re.split(r'[.!ุ\n]+', text)
sentences = [s.strip() for s in sentences if s.strip() and len(s.strip()) > 10]
unique_sentences = []
for sent in sentences:
if not any(sent.strip() == existing.strip() for existing in unique_sentences):
unique_sentences.append(sent)
if len(unique_sentences) >= 2:
return '. '.join(unique_sentences[:2]) + '.'
elif len(unique_sentences) == 1:
return unique_sentences[0] + '.'
else:
return text[:150] + "..." if len(text) > 150 else text
def summarize(self, text: str, num_sentences: int = 3) -> Dict[str, Any]:
print(f"Seq2Seq Summarizer: Processing text with {len(text)} characters")
cleaned_text = preprocess_for_summarization(text)
print(f"Seq2Seq Summarizer: After preprocessing: '{cleaned_text[:100]}...'")
sentences = re.split(r'[.!ุ\n]+', cleaned_text)
sentences = [s.strip() for s in sentences if s.strip()]
print(f"Seq2Seq Summarizer: Found {len(sentences)} sentences")
original_sentence_count = len(sentences)
target_length = min(num_sentences * 15, 50)
generated_summary = self._generate_summary(cleaned_text, max_length=target_length)
print(f"Seq2Seq Summarizer: Generated summary: '{generated_summary[:100]}...'")
summary_sentences = re.split(r'[.!ุ\n]+', generated_summary)
summary_sentences = [s.strip() for s in summary_sentences if s.strip()]
if len(summary_sentences) < num_sentences and len(sentences) > len(summary_sentences):
remaining_needed = num_sentences - len(summary_sentences)
additional_sentences = sentences[:remaining_needed]
summary_sentences.extend(additional_sentences)
summary_sentences = summary_sentences[:num_sentences]
final_summary = ' '.join(summary_sentences)
dummy_scores = [1.0] * len(sentences)
selected_indices = list(range(min(len(sentences), len(summary_sentences))))
return {
"summary": final_summary,
"original_sentence_count": original_sentence_count,
"summary_sentence_count": len(summary_sentences),
"sentences": sentences,
"selected_indices": selected_indices,
"sentence_scores": dummy_scores,
"top_sentence_scores": [1.0] * len(summary_sentences),
"generated_summary": generated_summary,
"model_type": "seq2seq"
}
|