Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,94 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from langchain.chains import RetrievalQA
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
8 |
|
9 |
# 设置路径
|
|
|
10 |
VECTOR_STORE_DIR = "./vector_store"
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
print("🔧 加载生成模型...")
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def qa_fn(query):
|
33 |
if not query.strip():
|
34 |
return "❌ 请输入问题内容。"
|
|
|
|
|
35 |
try:
|
36 |
result = qa_chain({"query": query})
|
37 |
answer = result["result"]
|
@@ -41,9 +98,11 @@ def qa_fn(query):
|
|
41 |
)
|
42 |
return f"📌 回答:{answer.strip()}\n\n📚 参考:\n{sources_text}"
|
43 |
except Exception as e:
|
44 |
-
|
|
|
45 |
|
46 |
-
|
|
|
47 |
gr.Markdown("## 📘 数学知识问答助手\n输入教材相关问题,例如:“什么是函数的定义域?”")
|
48 |
with gr.Row():
|
49 |
query_input = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2)
|
@@ -52,5 +111,9 @@ with gr.Blocks(title="数学知识问答助手") as demo:
|
|
52 |
|
53 |
submit_btn.click(fn=qa_fn, inputs=query_input, outputs=output_box)
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
import torch # 确保导入 torch,因为 phi-2 模型需要
|
4 |
+
import logging
|
5 |
+
|
6 |
+
# LangChain 新版导入方式
|
7 |
+
from langchain_chroma import Chroma
|
8 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
9 |
+
# 注意:HuggingFacePipeline 从 0.2.x 开始推荐从 langchain_huggingface 导入
|
10 |
+
# 如果遇到问题,也可以尝试从 langchain_community.llms 导入
|
11 |
+
from langchain_huggingface.llms import HuggingFacePipeline # 或者 from langchain_community.llms import HuggingFacePipeline
|
12 |
from langchain.chains import RetrievalQA
|
13 |
+
|
14 |
+
# Transformers 库
|
15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
16 |
+
|
17 |
+
logging.basicConfig(level=logging.INFO) # 更好的日志级别
|
18 |
|
19 |
# 设置路径
|
20 |
+
# 确保这些路径与您的预下载模型和向量库文件夹名称匹配
|
21 |
VECTOR_STORE_DIR = "./vector_store"
|
22 |
+
# 将模型名称指向本地预下载的路径
|
23 |
+
MODEL_NAME = "./hf_models_cache/models--uer--gpt2-chinese-cluecorpussmall"
|
24 |
+
EMBEDDING_MODEL_NAME = "./hf_models_cache/models--sentence-transformers--paraphrase-multilingual-mpnet-base-v2"
|
25 |
+
|
26 |
|
27 |
+
# 1. 轻量 LLM(uer/gpt2-chinese-cluecorpussmall)
|
28 |
print("🔧 加载生成模型...")
|
29 |
+
try:
|
30 |
+
# 确保 tokenizer 和 model 是从正确的本地路径加载
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
MODEL_NAME,
|
34 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
35 |
+
device_map="auto",
|
36 |
+
)
|
37 |
+
gen_pipe = pipeline(
|
38 |
+
task="text-generation",
|
39 |
+
model=model,
|
40 |
+
tokenizer=tokenizer,
|
41 |
+
max_new_tokens=256,
|
42 |
+
temperature=0.5,
|
43 |
+
top_p=0.9,
|
44 |
+
do_sample=True,
|
45 |
+
)
|
46 |
+
llm = HuggingFacePipeline(pipeline=gen_pipe)
|
47 |
+
print("✅ 生成模型加载成功。")
|
48 |
+
except Exception as e:
|
49 |
+
logging.error(f"加载生成模型失败: {e}", exc_info=True)
|
50 |
+
# 如果加载失败,可以考虑在这里退出或者给一个友好的错误提示
|
51 |
+
llm = None # 确保 llm 为 None,避免后续报错
|
52 |
+
print("❌ 生成模型加载失败,应用可能无法正常工作。")
|
53 |
+
|
54 |
+
|
55 |
+
# 2. 向量库和嵌入模型
|
56 |
+
print("📚 加载向量库和嵌入模型...")
|
57 |
+
try:
|
58 |
+
embeddings = HuggingFaceEmbeddings(
|
59 |
+
model_name=EMBEDDING_MODEL_NAME # 指向本地预下载的嵌入模型路径
|
60 |
+
)
|
61 |
+
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
|
62 |
+
print("✅ 向量库加载成功。")
|
63 |
+
except Exception as e:
|
64 |
+
logging.error(f"加载向量库失败: {e}", exc_info=True)
|
65 |
+
vectordb = None # 确保 vectordb 为 None
|
66 |
+
print("❌ 向量库加载失败,RAG功能将无法使用。")
|
67 |
+
|
68 |
|
69 |
+
# 3. RAG 问答链
|
70 |
+
qa_chain = None
|
71 |
+
if llm and vectordb: # 只有当LLM和向量库都成功加载时才构建RAG链
|
72 |
+
try:
|
73 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
74 |
+
qa_chain = RetrievalQA.from_chain_type(
|
75 |
+
llm=llm,
|
76 |
+
chain_type="stuff",
|
77 |
+
retriever=retriever,
|
78 |
+
return_source_documents=True
|
79 |
+
)
|
80 |
+
print("✅ RAG问答链构建成功。")
|
81 |
+
except Exception as e:
|
82 |
+
logging.error(f"构建RAG问答链失败: {e}", exc_info=True)
|
83 |
+
print("❌ RAG问答链构建失败。")
|
84 |
+
|
85 |
+
|
86 |
+
# 4. 业务函数
|
87 |
def qa_fn(query):
|
88 |
if not query.strip():
|
89 |
return "❌ 请输入问题内容。"
|
90 |
+
if not qa_chain: # 检查 qa_chain 是否已成功构建
|
91 |
+
return "⚠️ 问答系统未完全加载,请稍后再试或检查日志。"
|
92 |
try:
|
93 |
result = qa_chain({"query": query})
|
94 |
answer = result["result"]
|
|
|
98 |
)
|
99 |
return f"📌 回答:{answer.strip()}\n\n📚 参考:\n{sources_text}"
|
100 |
except Exception as e:
|
101 |
+
logging.exception("问答失败:%s", e)
|
102 |
+
return f"❌ 出现错误:{str(e)}\n请检查日志获取更多信息。"
|
103 |
|
104 |
+
# 5. Gradio UI
|
105 |
+
with gr.Blocks(title="数学知识问答助手", theme=gr.themes.Base()) as demo:
|
106 |
gr.Markdown("## 📘 数学知识问答助手\n输入教材相关问题,例如:“什么是函数的定义域?”")
|
107 |
with gr.Row():
|
108 |
query_input = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2)
|
|
|
111 |
|
112 |
submit_btn.click(fn=qa_fn, inputs=query_input, outputs=output_box)
|
113 |
|
114 |
+
gr.Markdown("---\n模型:uer/gpt2-chinese-cluecorpussmall + Chroma RAG | Powered by Hugging Face Spaces")
|
115 |
+
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
demo.launch()
|
119 |
|