Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,131 +1,56 @@
|
|
1 |
-
import
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
from
|
5 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
-
from langchain_community.llms import HuggingFacePipeline
|
7 |
from langchain.chains import RetrievalQA
|
8 |
-
from transformers import
|
|
|
9 |
|
10 |
-
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
)
|
16 |
-
vector_store = Chroma(
|
17 |
-
persist_directory="vector_store",
|
18 |
-
embedding_function=embedding_model,
|
19 |
-
)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
model = AutoModelForCausalLM.from_pretrained(
|
25 |
-
model_id,
|
26 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
27 |
-
device_map="auto",
|
28 |
-
)
|
29 |
-
gen_pipe = pipeline(
|
30 |
-
task="text-generation",
|
31 |
-
model=model,
|
32 |
-
tokenizer=tokenizer,
|
33 |
-
max_new_tokens=256,
|
34 |
-
temperature=0.5,
|
35 |
-
top_p=0.9,
|
36 |
-
do_sample=True,
|
37 |
)
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
42 |
qa_chain = RetrievalQA.from_chain_type(
|
43 |
llm=llm,
|
44 |
chain_type="stuff",
|
45 |
retriever=retriever,
|
|
|
46 |
)
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
return "⚠️ 请输入学习问题,例如:什么是定积分?"
|
52 |
try:
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
def generate_outline(topic: str):
|
59 |
-
if not topic.strip():
|
60 |
-
yield "⚠️ 请输入章节或主题,例如:高等数学 第六章 定积分", ""
|
61 |
-
return
|
62 |
-
|
63 |
-
yield "⌛ 正在检索/生成,请稍候…", ""
|
64 |
-
|
65 |
-
try:
|
66 |
-
docs = retriever.get_relevant_documents(topic)
|
67 |
-
if not docs:
|
68 |
-
yield "⚠️ 没有找到相关内容,请换个关键词试试。", ""
|
69 |
-
return
|
70 |
-
|
71 |
-
snippet = "\n".join(d.page_content for d in docs)
|
72 |
-
prompt = (
|
73 |
-
f"根据以下内容,为“{topic}”生成大学本科层次的结构化学习大纲,格式示例:\n"
|
74 |
-
f"一、章节标题\n 1. 节标题\n (1)要点描述\n...\n\n"
|
75 |
-
f"文档内容:\n{snippet}\n\n学习大纲:"
|
76 |
)
|
77 |
-
|
78 |
-
outline = raw.split("学习大纲:")[-1].strip()
|
79 |
-
yield outline, snippet
|
80 |
except Exception as e:
|
81 |
-
|
82 |
-
yield "⚠️ 抱歉,生成失败,请稍后再试。", ""
|
83 |
-
|
84 |
-
def placeholder_fn(*args, **kwargs):
|
85 |
-
return "功能尚未实现,请等待后续更新。"
|
86 |
-
|
87 |
-
# 5. Gradio UI
|
88 |
-
with gr.Blocks(title="智能学习助手", theme=gr.themes.Base()) as demo:
|
89 |
-
gr.Markdown("# 📚 智能学习助手 v2.0\n— 专业课向量问答与大纲生成 —")
|
90 |
-
|
91 |
-
with gr.Tabs():
|
92 |
-
# Chat tab
|
93 |
-
with gr.TabItem("💬 智能问答"):
|
94 |
-
chatbot = gr.Chatbot(show_label=False, height=400)
|
95 |
-
user_msg = gr.Textbox(placeholder="输入学习问题", show_label=False)
|
96 |
-
send_btn = gr.Button("发送", variant="primary")
|
97 |
-
|
98 |
-
def chat_flow(message, history):
|
99 |
-
history.append((message, "🤔 正在思考中,请稍后…"))
|
100 |
-
yield "", history
|
101 |
-
ans = simple_qa(message)
|
102 |
-
history[-1] = (message, ans)
|
103 |
-
yield "", history
|
104 |
-
|
105 |
-
send_btn.click(chat_flow, [user_msg, chatbot], [user_msg, chatbot])
|
106 |
-
user_msg.submit(chat_flow, [user_msg, chatbot], [user_msg, chatbot])
|
107 |
-
|
108 |
-
# Outline tab
|
109 |
-
with gr.TabItem("📝 生成学习大纲"):
|
110 |
-
topic_in = gr.Textbox(label="章节主题", placeholder="例如:定积分")
|
111 |
-
outline_out = gr.Textbox(label="系统生成的大纲", lines=12)
|
112 |
-
snippet_out = gr.Textbox(label="[调试] 检索片段", lines=6, visible=False)
|
113 |
-
gen_btn = gr.Button("生成大纲", variant="primary")
|
114 |
-
gen_btn.click(generate_outline, inputs=topic_in, outputs=[outline_out, snippet_out])
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
|
123 |
-
|
124 |
-
gr.Textbox(label="标准答案", lines=4).render()
|
125 |
-
gr.Textbox(label="学生答案", lines=4).render()
|
126 |
-
gr.Button("开始批改").click(placeholder_fn, [], [])
|
127 |
|
128 |
-
|
129 |
|
130 |
-
if __name__ == "__main__":
|
131 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
from langchain.vectorstores import Chroma
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
5 |
from langchain.chains import RetrievalQA
|
6 |
+
from transformers import pipeline
|
7 |
+
from langchain.llms import HuggingFacePipeline
|
8 |
|
9 |
+
# 设置路径
|
10 |
+
VECTOR_STORE_DIR = "./vector_store"
|
11 |
+
MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall"
|
12 |
|
13 |
+
# 设置 LLM 和检索器
|
14 |
+
print("🔧 加载生成模型...")
|
15 |
+
gen_pipe = pipeline("text-generation", model=MODEL_NAME, max_new_tokens=256)
|
16 |
+
llm = HuggingFacePipeline(pipeline=gen_pipe)
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
print("📚 加载向量库...")
|
19 |
+
embeddings = HuggingFaceEmbeddings(
|
20 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
+
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
|
23 |
|
24 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
|
|
25 |
qa_chain = RetrievalQA.from_chain_type(
|
26 |
llm=llm,
|
27 |
chain_type="stuff",
|
28 |
retriever=retriever,
|
29 |
+
return_source_documents=True
|
30 |
)
|
31 |
|
32 |
+
def qa_fn(query):
|
33 |
+
if not query.strip():
|
34 |
+
return "❌ 请输入问题内容。"
|
|
|
35 |
try:
|
36 |
+
result = qa_chain({"query": query})
|
37 |
+
answer = result["result"]
|
38 |
+
sources = result.get("source_documents", [])
|
39 |
+
sources_text = "\n\n".join(
|
40 |
+
[f"【片段 {i+1}】\n" + doc.page_content for i, doc in enumerate(sources)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
)
|
42 |
+
return f"📌 回答:{answer.strip()}\n\n📚 参考:\n{sources_text}"
|
|
|
|
|
43 |
except Exception as e:
|
44 |
+
return f"❌ 出现错误:{str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
with gr.Blocks(title="数学知识问答助手") as demo:
|
47 |
+
gr.Markdown("## 📘 数学知识问答助手\n输入教材相关问题,例如:“什么是函数的定义域?”")
|
48 |
+
with gr.Row():
|
49 |
+
query_input = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2)
|
50 |
+
output_box = gr.Textbox(label="回答", lines=15)
|
51 |
+
submit_btn = gr.Button("提问")
|
52 |
|
53 |
+
submit_btn.click(fn=qa_fn, inputs=query_input, outputs=output_box)
|
|
|
|
|
|
|
54 |
|
55 |
+
demo.launch()
|
56 |
|
|
|
|