Spaces:
Sleeping
Sleeping
import os, gradio as gr, torch, logging | |
from langchain_chroma import Chroma | |
from langchain_community.embeddings import HuggingFaceEmbeddings # ← 新路径 | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.chains import RetrievalQA | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
logging.basicConfig(level=logging.INFO) | |
VECTOR_STORE_DIR = "./vector_store" | |
MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall" | |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" | |
# ─── 1. 加载 LLM ─── | |
print("🔧 加载生成模型…") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
device_map="auto", | |
) | |
gen_pipe = pipeline( | |
task="text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=256, | |
temperature=0.5, | |
top_p=0.9, | |
do_sample=True, | |
) | |
llm = HuggingFacePipeline(pipeline=gen_pipe) | |
# ─── 2. 加载向量库 ─── | |
print("📚 加载向量库…") | |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME) | |
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings) | |
# ─── 3. 构建 RAG 问答链 ─── | |
retriever = vectordb.as_retriever(search_kwargs={"k": 3}) | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True, | |
) | |
# ─── 4. 业务函数 ─── | |
def qa_fn(query: str): | |
if not query.strip(): | |
return "❌ 请输入问题内容。" | |
result = qa_chain({"query": query}) | |
answer = result["result"] | |
sources = result.get("source_documents", []) | |
sources_text = "\n\n".join( | |
[f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)] | |
) | |
return f"📌 回答:{answer.strip()}\n\n📚 参考:\n{sources_text}" | |
# ─── 5. Gradio UI ─── | |
with gr.Blocks(title="数学知识问答助手") as demo: | |
gr.Markdown("## 📘 数学知识问答助手\n输入教材相关问题,例如:“什么是函数的定义域?”") | |
with gr.Row(): | |
query = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2) | |
answer = gr.Textbox(label="回答", lines=15) | |
gr.Button("提问").click(qa_fn, inputs=query, outputs=answer) | |
gr.Markdown("---\n模型:gpt2-chinese-cluecorpus + Chroma RAG\nPowered by Hugging Face Spaces") | |
if __name__ == "__main__": | |
demo.launch() | |