Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,109 +1,71 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
4 |
-
import logging
|
5 |
-
|
6 |
-
# LangChain 0.1.x 系列的导入方式
|
7 |
from langchain_chroma import Chroma
|
8 |
-
from
|
9 |
from langchain_community.llms import HuggingFacePipeline
|
10 |
from langchain.chains import RetrievalQA
|
11 |
-
|
12 |
-
# Transformers 库
|
13 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
14 |
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall" # <--- 修改这里!
|
21 |
-
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" # <--- 修改这里!
|
22 |
|
23 |
-
# 1.
|
24 |
-
print("🔧
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
llm = HuggingFacePipeline(pipeline=gen_pipe)
|
42 |
-
print("✅ 生成模型加载成功。")
|
43 |
-
except Exception as e:
|
44 |
-
logging.error(f"加载生成模型失败: {e}", exc_info=True)
|
45 |
-
llm = None
|
46 |
-
print("❌ 生成模型加载失败,应用可能无法正常工作。")
|
47 |
|
48 |
-
# 2.
|
49 |
-
print("📚
|
50 |
-
|
51 |
-
|
52 |
-
model_name=EMBEDDING_MODEL_NAME
|
53 |
-
)
|
54 |
-
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
|
55 |
-
print("✅ 向量库加载成功。")
|
56 |
-
except Exception as e:
|
57 |
-
logging.error(f"加载向量库失败: {e}", exc_info=True)
|
58 |
-
vectordb = None
|
59 |
-
print("❌ 向量库加载失败,RAG功能将无法使用。")
|
60 |
|
61 |
-
# 3. RAG 问答链
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
retriever=retriever,
|
70 |
-
return_source_documents=True
|
71 |
-
)
|
72 |
-
print("✅ RAG问答链构建成功。")
|
73 |
-
except Exception as e:
|
74 |
-
logging.error(f"构建RAG问答链失败: {e}", exc_info=True)
|
75 |
-
print("❌ RAG问答链构建失败。")
|
76 |
|
77 |
-
# 4. 业务函数
|
78 |
-
def qa_fn(query):
|
79 |
if not query.strip():
|
80 |
return "❌ 请输入问题内容。"
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
[f"【片段 {i+1}】\n" + doc.page_content for i, doc in enumerate(sources)]
|
89 |
-
)
|
90 |
-
return f"📌 回答:{answer.strip()}\n\n📚 参考:\n{sources_text}"
|
91 |
-
except Exception as e:
|
92 |
-
logging.exception("问答失败:%s", e)
|
93 |
-
return f"❌ 出现错误:{str(e)}\n请检查日志获取更多信息。"
|
94 |
|
95 |
-
# 5. Gradio UI
|
96 |
-
with gr.Blocks(title="数学知识问答助手"
|
97 |
gr.Markdown("## 📘 数学知识问答助手\n输入教材相关问题,例如:“什么是函数的定义域?”")
|
98 |
with gr.Row():
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
submit_btn.click(fn=qa_fn, inputs=query_input, outputs=output_box)
|
104 |
-
|
105 |
-
gr.Markdown("---\n模型:uer/gpt2-chinese-cluecorpussmall + Chroma RAG | Powered by Hugging Face Spaces")
|
106 |
|
107 |
if __name__ == "__main__":
|
108 |
demo.launch()
|
109 |
|
|
|
|
1 |
+
import os, gradio as gr, torch, logging
|
|
|
|
|
|
|
|
|
|
|
2 |
from langchain_chroma import Chroma
|
3 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings # ← 新路径
|
4 |
from langchain_community.llms import HuggingFacePipeline
|
5 |
from langchain.chains import RetrievalQA
|
|
|
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
7 |
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
|
10 |
+
VECTOR_STORE_DIR = "./vector_store"
|
11 |
+
MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall"
|
12 |
+
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
|
|
|
|
13 |
|
14 |
+
# ─── 1. 加载 LLM ───
|
15 |
+
print("🔧 加载生成模型…")
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
MODEL_NAME,
|
19 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
20 |
+
device_map="auto",
|
21 |
+
)
|
22 |
+
gen_pipe = pipeline(
|
23 |
+
task="text-generation",
|
24 |
+
model=model,
|
25 |
+
tokenizer=tokenizer,
|
26 |
+
max_new_tokens=256,
|
27 |
+
temperature=0.5,
|
28 |
+
top_p=0.9,
|
29 |
+
do_sample=True,
|
30 |
+
)
|
31 |
+
llm = HuggingFacePipeline(pipeline=gen_pipe)
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# ─── 2. 加载向量库 ───
|
34 |
+
print("📚 加载向量库…")
|
35 |
+
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
36 |
+
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# ─── 3. 构建 RAG 问答链 ───
|
39 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
40 |
+
qa_chain = RetrievalQA.from_chain_type(
|
41 |
+
llm=llm,
|
42 |
+
chain_type="stuff",
|
43 |
+
retriever=retriever,
|
44 |
+
return_source_documents=True,
|
45 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# ─── 4. 业务函数 ───
|
48 |
+
def qa_fn(query: str):
|
49 |
if not query.strip():
|
50 |
return "❌ 请输入问题内容。"
|
51 |
+
result = qa_chain({"query": query})
|
52 |
+
answer = result["result"]
|
53 |
+
sources = result.get("source_documents", [])
|
54 |
+
sources_text = "\n\n".join(
|
55 |
+
[f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)]
|
56 |
+
)
|
57 |
+
return f"📌 回答:{answer.strip()}\n\n📚 参考:\n{sources_text}"
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# ─── 5. Gradio UI ───
|
60 |
+
with gr.Blocks(title="数学知识问答助手") as demo:
|
61 |
gr.Markdown("## 📘 数学知识问答助手\n输入教材相关问题,例如:“什么是函数的定义域?”")
|
62 |
with gr.Row():
|
63 |
+
query = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2)
|
64 |
+
answer = gr.Textbox(label="回答", lines=15)
|
65 |
+
gr.Button("提问").click(qa_fn, inputs=query, outputs=answer)
|
66 |
+
gr.Markdown("---\n模型:gpt2-chinese-cluecorpus + Chroma RAG\nPowered by Hugging Face Spaces")
|
|
|
|
|
|
|
67 |
|
68 |
if __name__ == "__main__":
|
69 |
demo.launch()
|
70 |
|
71 |
+
|